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ABSTRACT

Self-supervised learning has driven significant progress in learning from single-
subject, iconic images. However, there are still unanswered questions about the
use of minimally-curated, naturalistic video data, which contain dense scenes with
many independent objects, imbalanced class distributions, and varying object sizes.
In this paper, we propose PooDLe, a self-supervised learning method that combines
an invariance-based objective on pooled representations with a dense SSL objective
that enforces equivariance to optical flow warping. Our results show that a unified
objective applied at multiple feature scales is essential for learning effective image
representations from naturalistic videos. We validate our method with experiments
on the BDD100K driving video dataset and the Walking Tours first-person video
dataset, demonstrating its ability to capture spatial understanding from a dense
objective and semantic understanding via a pooled representation objective.

1 INTRODUCTION

Humans and other animals learn visual understanding from a continuous stream of inputs with little
explicit supervision. Self-supervised learning (SSL) (Chen et al., 2020; Grill et al., 2020; Chen &
He, 2021; Caron et al., 2021; Bardes et al., 2021; He et al., 2022; Assran et al., 2023; Bardes et al.,
2023a; He et al., 2020) has made great strides in learning without human annotations, becoming
competitive with supervised learning. However, many methods still revolve around ImageNet (Deng
et al., 2009), which is implicitly supervised through iconic images that contain a single, clear subject
and a balanced class distribution. In contrast, naturalistic data like egocentric videos contain cluttered
scenes, imbalanced classes, and objects of varying sizes, making them ill-suited for iconic methods.

Nevertheless, these naturalistic videos are still valuable for their information density and ease of
collection, while also mimicking the real-life perspective of humans. Unfortunately, iconic methods,
which pool global image representations, may perform poorly as dense scenes produce views
containing independent subjects that are semantically incompatible (Figure 1b, red boxes). Recent
works have attempted to address this weakness by introducing 1) cropping (Selvaraju et al., 2021) or
attention (Venkataramanan et al., 2024) mechanisms to account for multiple subjects, and 2) “dense
SSL” objectives (Xiong et al., 2021; Wang et al., 2021b) with losses defined over regions of unpooled
image representations.

While dense SSL methods avoid semantic mismatches, we discover that they are susceptible to
spatial imbalance where larger background classes like the sky dominate the representation, while
smaller classes like pedestrians are underrepresented. This is undesirable because smaller foreground
objects should be prioritized over low-detail, repetitive background classes. Furthermore, this can be
dangerous in applications like self-driving (Yu et al., 2020) where critical objects like pedestrians
occupy less than 0.3% of a video frame (Figure 1b, green boxes and Ic). This contrasts with
ImageNet (Deng et al., 2009) training, where models can easily learn semantics from iconic images
with clear, single-subject views and a balanced class distribution. Surprisingly, dense methods
like FlowE (Xiong et al., 2021) and supervised ImageNet pretraining achieve similar downstream
performance while converging to very different solutions; the former prioritizes large background
classes while the latter captures many small and rare classes, but with relatively poor specificity.
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Figure 1: Challenges of SSL on dense, naturalistic video include training on crowded scenes with
many objects of varying scale and class imbalance. (a) Iconic image from ImageNet. (b) Dense
scene from BDD100K. Global crops (red boxes) used for iconic data contain multiple, disjoint sets
of objects. Subcrops (green boxes) provide pseudo-iconic views of a single subject. (c) Naturalistic
video like BDD100K have a long-tailed class distribution of class sizes and frequency; classes ordered
by percentage of pixels. Example subcrops capture smaller classes like "Traffic Light" and "Person."

Some dense SSL methods (Wang et al., 2021b; Parthasarathy et al., 2023; Venkataramanan et al.,
2024) include losses that optimize a global, pooled representation to learn semantic information from
dense scenes, but do not explore how to integrate these two objectives through means of architecture
and augmentation strategies.

To address the challenges of cluttered scenes and spatial imbalance, we propose a joint Pooled and
Dense Learning (PooDLe) method that optimizes a dense SSL objective over full images and a
pooled objective on smaller, semantically-aligned views. The combination of objectives captures
both high-level semantics and fine-grained details, effectively representing both small objects and
scene-level understanding. Our dense objective is adopted from FlowE, using optical flow warping
to align dense feature maps. To adapt the pooled objective to dense scene data, we introduce a
flow-informed cropping procedure that generates pairs of smaller “subcrops” with high alignment.
These subcrops serve as pseudo-iconic views of foreground objects, functionally increasing the
prevalence of smaller objects (Figure 1). Finally, we introduce a lightweight spatial decoder module
(SDM) with top-down layers and UNet-like lateral connections (Ronneberger et al., 2015) to
upsample high-level semantic representations and preserve smaller objects in the dense objective.
‘We show that both objectives, combined with the SDM, is essential for capturing the semantics of
smaller objects and achieving strong downstream task performance.

We pretrain on BDD100K, a dataset of dashcam driving videos as well as Walking Tours, a dataset
of first-person walking videos (Venkataramanan et al., 2024). PooDLe achieves state-of-the-art
performance on semantic segmentation and object detection benchmarks, with a notable gain on
recognizing small objects. We also introduce Walking Tours Semantic (WT-Sem) as a new in-
distribution semantic segmentation evaluation for Walking Tours. In our ablations, we show that our
joint objective formulation and the SDM are critical for success. Finally, we study the effect of crop
area, input resolution, number of subcrops and temporal stride.

In summary, our contributions are as follows:

1. We introduce PooDLe, a new SSL method which overcomes the challenges of spatial imbalance
and cluttered scenes by unifying a flow equivariance, dense SSL objective and a pooled objective
over pseudo-iconic subcrops alongside a spatial decoder module to effectively learn from natu-
ralistic video. PooDLe achieves state-of-the-art performance on BDD100K (Yu et al., 2020) and
Cityscapes (Cordts et al., 2016) semantic segmentation and BDD object detection. It also obtains
the highest mloU on ADE20K (Zhou et al., 2017), and on WT-Sem, our new, in-distribution
semantic segmentation task for Walking Tours.

2. We deconstruct the BDD100K semantic segmentation task, identifying class categories by fre-
quency and size within the dataset. We show that existing dense SSL methods and supervised
ImageNet training produce different results across these categories, while PooDLe learns a
balanced semantic and spatial representation to achieve strong, consistent performance.

3. We study the effects of global and subcrop area, input resolution and temporal stride between
paired frames. We show the importance of maintaining pixel density by adjusting crop area when
training with larger resolutions for learning visual representations. We also verified that smaller
subcrop areas are able to better capture smaller classes. We believe these observations will be
helpful in guiding future work on dense, naturalistic data.



2 RELATED WORK

Self-supervised learning with iconic images. Representation learning on iconic image datasets has
a long history, from denoising autoencoders (Vincent et al., 2010) to joint embedding methods (Chen
et al., 2020; He et al., 2020; Grill et al., 2020; Zbontar et al., 2021; Bardes et al., 2021; Caron et al.,
2021) to joint-embedding predictive architectures (Assran et al., 2023; Bardes et al., 2023b). Joint
embedding methods learn representation invariance to visual changes produced by augmentations
using contrastive (Chen et al., 2020; Oord et al., 2018), mean squared error (Grill et al., 2020), or
classification (Caron et al., 2021; 2020) losses between corresponding pairs, pushing SSL to new
heights on ImageNet classification. Later works extend these methods to curated, internet-scale
data (Oquab et al., 2023) and include other modalities like text (Radford et al., 2021). Separately,
MAE (He et al., 2022) learns via reconstruction of masked image regions. iBOT (Zhou et al.,
2021) combines joint embedding methods with token reconstruction to achieve impressive results on
ImageNet classification. The methods above have been primarily designed for iconic images and
contain assumptions that may not transfer well to uncurated datasets, e.g. dense scenes. Methods
leveraging multi-crop (Caron et al., 2020; 2021; Oquab et al., 2023; Zhou et al., 2021) generate small
crops optimized to predict the representations of global crops for training on iconic images with little
additional compute. In contrast, our subcrop strategy yields small, aligned crops as pseudo-iconic,
paired views from otherwise dense scenes.

Training using dense multi-subject images. Following the success of SSL on ImageNet, other
works seek to learn from dense, multi-subject images where augmented views may not contain
corresponding subjects for invariance learning. Wang et al. (2021b); Xie et al. (2021); Chen et al.
(2021) extend joint embedding methods by leveraging feature similarity bootstrapped from standard
invariance learning to identify positive pairs across dense, unpooled feature maps. Hénaff et al. (2021);
Wang et al. (2021a) optimize dense losses, contrasting pixels belonging to different semantic classes;
these methods require off-the-shelf segmentation modules. Ziegler & Asano (2022); Guo et al. (2023)
utilize DINO (Caron et al., 2021) attention maps to identify training pairs, while ADCLR (Zhang et al.,
2023b) identifies pairs using small “query” crops and the patches that attend to them. These methods
advance the ability to learn from dense images with multiple objects, but still have limitations. Some
rely on learning objectives that make assumptions about iconic data, while others struggle with the
spatial imbalance problem that is especially prevalent in naturalistic data.

Learning image representations from video data. Extending beyond images, other works have
sought to capture the variance of objects through time by training on pairs of video frames. Gordon
et al. (2020) adapts contrastive learning to use correlated frames as positive examples, while Jabri et al.
(2020); Parthasarathy et al. (2023) identify positive pairs based on high similarity in representation
space. FlowE (Xiong et al., 2021) builds on BYOL (Grill et al., 2020) and identifies positive spatial
regions between frames using off-the-shelf flow. MC-JEPA (Bardes et al., 2023b) learns motion
using video data by aligning latent representations throughout the feature pyramid while performing
representation learning on ImageNet. Most recently, DoRA (Venkataramanan et al., 2024) proposes
a new dense video dataset and extends DINO by clustering over many frames to identify and track
objects for representation learning. In the MAE paradigm, Tong et al. (2022); Feichtenhofer et al.
(2022) directly reconstruct sequences of frames while Weinzaepfel et al. (2022); Gupta et al. (2023)
perform reconstruction given a corresponding overlapping frame. While PooDLe learns a rich image
representation from video data similar to these existing methods, it distinguishes itself by leveraging
a unified dense and pooled objective architecture, specifically designed to tackle the challenges posed
by naturalistic data.

3 PooDLEN: POOLED AND DENSE LEARNING FROM NATURALISTIC VIDEOS

We present PooDLe, a self-supervised method for learning visual representations using paired frames
from naturalistic, first-person videos. PooDLe combines two SSL objectives: a dense objective
for learning representations of dense, crowded scenes; and a pooled objective on small subcrops
sampled using flow-aware cropping augmentations. We also propose a lightweight spatial decoder
module (SDM) that uses top-down decoder layers and UNet-like /ateral connections to earlier encoder
representations to both upsample the high-level representations and resurface fine-grained details and
small objects that may get lost in downsampling operations. For a high-level overview of PooDLe,
see Figure 2.
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Figure 2: PooDLe, a self-supervised learning method that combines pooled and dense objectives.

Green path: dense objective performing flow-equivariance learning on the output of the decoder g(-).
path: pooled objective encoding K subcrops sampled with flow-informed cropping. Projector

modules are not shown. Offline weights £ are the exponential moving average of online weights 6.

Preliminaries. Inputs to the model are video frame pairs x¢, ;4 A; With dimensions H x W, and
dense optical flow M;_,+1 . Randomly sampled augmentations A; and A, are applied to each
example to create positive training pairs. In a similar setup to BYOL, the encoder and projector are
denoted as a function p = f(x) using either online weights 0 or offline, EMA-updated weights &.
The predictor module gy (+) only has online weights 6. Separate projector and predictor modules are
used for the pooled and dense objectives, but are not annotated for simplicity. We use a ResNet-50
backbone, as well as projectors and predictors following FlowE (Xiong et al., 2021) and BYOL (Grill
et al., 2020), that are discarded after pretraining.

Dense SSL with flow equivariance. The dense objective follows FlowE (Xiong et al., 2021) by
using optical flow M;_,;, A¢ to align paired feature projections p; and p;; A¢. At a high-level, this
objective minimizes differences in representation between corresponding regions. More specifically,
the inverse augmentation functions A~! and optical flow are used to align the representations p and
after upsampling to input resolution H x W, the objective is the squared error:

1
Liense = T Hqg(Al_l(pt)) — (My—iqn¢ 0 Az_l)(Pt-s-At)H; ; (D

where normalization is applied after the predictor and flow warping.

Pooled objective with flow-informed subcrops. First, we identify K pseudo-iconic subcrop pairs.
Unlike for iconic data, random crops from paired frames are unlikely to contain a common subject.
To mitigate this problem, we once again use optical flow in a flow-informed cropping procedure
to identify aligned training pairs. For each subcrop pair, we sample a random point (u, v) in the
target frame x; 4 A, to serve as the crop center. It is then warped into the earlier frame x; using flow
M1+ ¢ plus random jitter (d,,, 0;) for paired center (u’,v’). A crop is made around each center,
with an area sampled from U [Spin, Smax] Of the global crop for subcrops @, ; and ©;4a¢ ;.

As we require both crop centers to land within the bounds of the image, subcrops tend to be center-
biased (Peng et al., 2022) and lack diversity. To remedy this, we employ a grid-sampling procedure
for selecting the initial crop center (u, v). Each global crop « is divided into a grid with cells of side

length dgrig = min(H, W) X \/(Smin + Smax)/2 for a H/dgiq X W/dgiq grid. Each cell is selected
without replacement, and a center (u, v) is then uniformly sampled within the cell.

After K pairs (x4, Tt k) are generated, they are encoded by the backbone and the pooled
objective projector. Unlike the dense objective, no alignment or upsampling is performed, and each
projection p is averaged-pooled over its spatial dimensions before computing the loss:

K
1 _ _
ﬁpool = K E ||(I0(Pt,k) - pt+At,k”§ ) 2
k

where - denotes average pooling over spatial dimensions followed by normalization. Our objective
has each subcrop to predict its corresponding pair, which contains the same object in a different frame.



This differs from multi-crop (Caron et al., 2020), where local crops predict global crops, which would
be less effective for dense scenes as local crops only capture a subset of the objects in a frame.

Spatial Decoder Module (SDM). We introduce the SDM (Fig- Lpoa
ure 3b) to upsample high-level encoder features and preserve
information from lower layers, particularly smaller foreground
objects that may be lost during pooling operations. Its design
draws inspiration from a convolutional UNet (Ronneberger
et al., 2015) and FPN (Lin et al., 2017) and improves upon
FlowE’s use of dilated convolutions to replace pooling by ef-
ficiently maintaining high-resolution representations while re- (a) Baseline
ducing activations and memory usage. c
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The SDM utilizes decoder blocks, each consisting of an upsam-
ple operation, a computation block of processing layers g(-),
and a UNet-like lateral connection. The output of each block
is computed as:

z! = g(upsample(z))) + lateral (27), 3)

where z() is the representation after the /™" encoder stage and (b) PooDLe using SDM

2\ is an earlier feature map of the same spatial dimensions as

2+ The use of computation blocks and lateral connections Figure 3: a) Baseline: both losses
is ablated in Table 4. Figure 3 contrasts a naive implementation combined at final encoder layer;
that places both objectives at the top encoder level and Poo- b)PooDLe: SDM incorporates ear-
DLe, which uses the SDM to integrate the two objectives in a  lier feature maps, upsampling for
complementary fashion. Lense-
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4 EXPERIMENTS

We pretrain PooDLe on raw videos from BDDI100K (Yu et al, 2020) and Walk-
ing Tours (WT) (Venkataramanan et al., 2024) and evaluate them on semantic segmentation and
object detection benchmarks. The BDD100K pretrained model is evaluated on in-distribution tasks
as well as Cityscapes (Cordts et al., 2016), and the Walking Tours model on ADE20K (Agrawal et al.,
2015) and our newly proposed Walking Tours Semantic benchmark. We also ablate our combination
of loss functions and decoder components, as well as the effects of crop area and input resolutions.

4.1 EXPERIMENT SETUP

Pretraining datasets. 1) BDD (Yu et al., 2020) consists of 100,000 dashcam driving videos collected
in various weather conditions and times of day from New York and the San Francisco Bay Area. Each
video is ~40 seconds long at 720p and 30 fps. We pretrain with the 70,000 videos in the training split
and evaluate on the dataset’s semantic segmentation and object detection tasks. 2) Walking Tours
(WT) (Venkataramanan et al., 2024) is a dataset of first-person YouTube videos of a continuous
walkaround through various cities of Europe, Asia, and a wildlife safari. There are 10 videos, ranging
from 59 minutes to 2 hours 55 minutes, at 720p and 30 fps. Each video contains large numbers of
unique objects per frame and natural transitions in lighting and location. We use either the Venice
video (WTvenice) Or all 10 videos (WT,) following DoRA (Venkataramanan et al., 2024).

Technical details. We use ResNet-50 (R50) (He et al., 2016a) as our feature encoder, with the
dense projector and predictor networks following FlowE (Xiong et al., 2021) and pooled counterparts
following BYOL (Grill et al., 2020). For SDM, we use two decoder stages, with each consisting of a
2x upsample, a ResNet Bottleneck Block (He et al., 2016a), and a 2-layer convolutional MLP for the
lateral connection. When training on BDD, we sample two frames that are 0.5 ~ 1 seconds apart
(At € {15...30}) from each video. We then take two large crops from the same image coordinates
of area [0.16,0.45] of the original image and resize them to 512 x 1024 pixels before applying
augmentations. For each training epoch on WT, we divide each video into 10-second clips and
randomly sample two frames 0.5 seconds apart from each clip, and use crop area range [0.65, 1.0].
For both datasets, we apply color distortion and Gaussian blurring independently to each frame
following BYOL (Grill et al., 2020). For the dense objective, we also apply random reversible affine
transformations similar to FlowE (Xiong et al., 2021): random scaling of 0.9-1.1x and rotation
of -10-10 degrees. For the local objective, we sample K = 6 subcrop pairs with a crop area of



Table 1: BDD and CityScapes semantic segmentation (SemSeg) and object detection (Det) readout
evaluations. All settings are conducted with a frozen backbone. *Pretrained on BDD, initialized with
supervised IN1K weights.

BDD100K Sem. Seg. BDD100K Obj. Det. Cityscapes Sem. Seg.
. Linear UperNet Det C4 FPN Linear UperNet

Method Arch  Ep.  Pretrain mloU  Acc  mloU  Acc mAP mAP mloU  Acc  mloU  Acc

Scratch R50 - - | 97 550 26.1 812 | 0.0 77 98 580 30.7 84.1
DINO (Caron et al., 2021) ViT-S 300 BDD 29.6 86.8 41.1  90.1 - - 35.1 879 515 91.9
iBOT (Zhou et al., 2021) ViT-S 800 BDD 272 854 355 887 - - 320 862 440 903
DoRA (Venkataramanan et al., 2024) ~ ViT-S 200 BDD 332 88.1 43.3 907 - - 374 88.7 50.8 92.0
DINO (Caron et al., 2021) R50 100 BDD 13.1 647 256 803 0.3 11.9 149 69.4 29.2 81.4
PixPro (Xie et al., 2021) R50 100 BDD 21.8  80.0 37.3  88.0 0.7 18.4 255 81.0 443 89.5
DenseCL (Wang et al., 2021b) R50 100 BDD 242 849 41.8  90.0 0.7 20.3 266 85.6 532 919
FlowE (Xiong et al., 2021) R50 100 BDD 357 885 473 915 32 23.8 43.1 895 577 931
PooDLe R50 100 BDD 392 892 499 91.8 49 25.2 472 90.2 60.7 935
Supervised R50 600 INIK | 367 847 552 92.0 3.6 249 46.8 874 634 937
PooDLe R50 100 BDD* 44.7  90.7 541 927 39 28.0 52.0 91.5 65.1 94.4

Image Ground Truth PooDLe FlowE

DenseCL DINO DoRA Supervised IN1K

Figure 4: Visualization of BDD semantic segmentation linear readout. PooDLe is able to identify
smaller objects and generate cleaner object boundaries.

[0.05,0.3] of the initial crop, resized to 192 x 192 for both BDD and WT. For subcrops, random
spatial jitter is applied as =10% of the initial crops’ height and width.

Baselines. We use official implementations of DenseCL, PixPro, DINO, iBOT, and DoRA, and
our own implementation of FlowE for pretraining on BDD. We use torchvision for supervised
ImageNet (IN1K) and weights released online for ImageNet-pretrained DINO. We obtain weights
from the authors of DoRA for iBOT, DINO-ViT, and DoRA pretrained on WT and use official
implementations of DINO-R50, MAE, and PixPro for pretraining on WT. For PixPro, we use either
its FPN decoder or high-resolution crops for pretraining and report results from the best-performing
setting. We use 512 x 1024 crops to train all R50 baselines for more accurate comparisons.

Evaluation. We adopt the evaluation protocol from FlowE (Xiong et al., 2021) for BDD and
Cityscapes. We use DeepLab vl (Chen et al., 2018) as the “linear” readout header and UperNet (Xiao
etal., 2018) as the heavier readout head for semantic segmentation and Faster R-CNN with ResNet-C4
and Faster R-CNN with FPN (He et al., 2016b) as the standard and heavier readout headers for object
detection. We do not include ViT object detection due to the lack of an established recipe. For
semantic segmentation on ADE20K, we perform both linear readout following BDD and UperNet
finetuning as described in iBOT (Zhou et al., 2021). We retain the SDM when evaluating PooDLe
on semantic segmentation with linear readouts but discard it when using UperNet. We report mean
intersection-over-union (mloU), pixel-level accuracy (Acc), and mean average precision (mAP) as
our evaluation metrics. Additional details on implementation and hyperparameters are provided in
Appendix A.

4.2 MAIN RESULTS

BDD100K-pretrained models. We report our results on semantic segmentation and object detection
on the BDD100K benchmark in Table I. PooDLe achieves superior performance on all readout tasks
compared to prior methods, outperforming the strongest baseline FlowE by 3.5% mloU on linear



Table 2: ADE20K and WT-Sem semantic segmentation linear readout and finetuning evaluations.
Linear readout is performed with a frozen backbone while in finetuning, backbone parameters are
trainable. T DINO-ViT and iBOT results are taken from DoRA (Venkataramanan et al., 2024).

ADE20K Sem. Seg. WT-Sem Sem. Seg.
. SemSeg Linear Finetune SemSeg Linear Finetune
Method Arch  Epoch  Pretrain mloU Acc mloU  Acc | mloU Acc mloU  Acc
DINO (Caron et al., 2021) R50 800 INIK 15.7 61.5 43.0 80.5 8.8 76.7 17.8 87.6
DINO (Caron et al., 2021)f VIiT-S 100 IN1K - - 339 - - - - -
DINO (Caron et al., 2021) ViT-S 100 WTVenice 7.8 57.7 292 747 4.6 73.7 11.0  83.0
iBOT (Zhou et al., 2021)F ViT-S 100 WTvenice - - 33.9 - - - - -
MAE (He et al., 2022) ViT-S 100 WTVenice 74 55.1 24.1 714 4.3 72.6 89 815
DoRA (Venkataramanan et al., 2024) ~ ViT-S 100 WTVenice 14.1 63.5 352 717 6.2 76.9 13.6 85.7
DINO (Caron et al., 2021) R50 100 WTVenice 6.9 48.2 357 774 4.2 69.0 123 847
PixPro (Xie et al., 2021) R50 100 WTVenice 4.6 48.6 36.0 77.6 3.7 69.3 11.5 842
PooDLe R50 20 WTvenice 14.6 59.0 36.6 779 6.4 75.7 13.7 854
DINO (Caron et al., 2021 )T VIiT-S 100 WTan - - 34.1 - - - - -
MAE (He et al., 2022) ViT-S 100 WTa 10.6 60.4 314 759 6.6 71.7 127 852
DoRA (Venkataramanan et al., 2024) ~ ViT-S 100 WTa 13.9 64.4 383 793 7.8 79.4 159 875
PooDLe R50 20 WTa 16.5 63.9 41.0 79.6 11.2 81.3 17.0  86.9

Table 3: Breakdowns of mloU over different class groupings. Linear readout mloU is computed over
various groupings of the 19 classes in BDD semantic segmentation. *Pretrained on BDD, initialized
with supervised ImageNet weights.

Method Pretrain | All | Small Large | Rare Common

DINO BDD 29.6 8.4 42.0 1.0 42.8
DenseCL BDD 242 1.6 374 0.0 354
DoRA BDD 332 11.9 45.6 2.8 47.3
FlowE BDD 35.7 12.2 493 10.7 472
PooDLe BDD 39.2 18.3 514 | 12.0 51.8
Supervised INIK 36.7 27.2 422 16.1 46.2
PooDLe BDD* 4.7 252 56.1 | 17.9 571

and 2.6% mIoU on UperNet for semantic segmentation, and 1.7% mAP on C4 and 1.4% mAP on
FPN for object detection. We find that that PooDLe’s improved performance (Table 3) is attributed
to better recognition of small and rare object classes. We also evaluate the transfer of PooDLe
representations to new tasks by evaluating on the Cityscapes benchmark, where PooDLe outperforms
all baselines. Figure 4 shows predicted segmentation masks, and Figure 14 and Figure 15 show
additional evaluation results.

PooDLe also outperforms supervised IN1K pretraining, despite the latter’s advantage in learning
small and rare classes present in BDD100K (spatial imbalance shown in Figure 1) due to ImageNet
being a class-balanced dataset with iconic views of objects. In addition, we pretrain PooDLe on
BDD100K with weights initialized from the supervised IN1K checkpoint, improving mIoU by 8%
and Acc by 6% over the initialization weights on linear semantic segmentation. In Appendix G, we
show PooDLe remains competitive against IN1K-pretrained baselines despite being trained in the
challenging naturalistic video setting.

WT-pretrained models. We also train PooDLe on WTyepice and WT,;. Table 2 shows results on
ADE20K (Zhou et al., 2017) semantic segmentation using linear readout and finetuning follow-
ing (Venkataramanan et al., 2024). Notably, when pretrained on WT,;, PooDLe obtains 2.6% higher
mloU than DoRA on ADE20K linear readout, and 2.7% mloU on UperNet finetuning. PooDLe also
performs better on WTyepice, With a gain of 1.4% mIoU over DoRA and 0.6% mIoU over PixPro
on ADE20K UperNet finetuning. We note that PooDLe uses a smaller ResNet-50 backbone and is
trained for fewer epochs than DoRA, the strongest baseline. Despite these differences, these results
show that PooDLe learns strong representations from naturalistic video captured in the open world.
Figure 16 shows predicted segmentation masks for ADE20K.

Walking Tours Semantic benchmark. While ADE20K is a challenging benchmark, it contains a
mixture of indoor and outdoor scenes that can be out-of-distribution from scenes in Walking Tours.
Therefore, we introduce Walking Tours Semantic (WT-Sem) to provide a more in-distribution bench-



Table 4: Ablation studies on PooDLe components, reporting mIoU on BDD100K semantic segmenta-
tion linear readout. Rows without top-down follow FlowE (Xiong et al., 2021), replacing pooling
with dilated convolutions to maintain spatial extent. TFlow model trained without supervised labels.

Variant | Dense Pool Top-Down Lateral Flow | All | Small Large | Rare Common
| FlowE 4 RAFT | 28.8 8.7 40.5 1.8 29.2
2 v v RAFT | 289 7.2 41.6 2.2 28.7
3 v v v RAFT | 30.3 6.8 44.0 43 30.2
4 v v v RAFT | 30.3 10.9 41.7 2.4 31.1
5 v v v RAFT | 31.8 12.8 42.8 8.3 31.7
6 PooDLet 4 v 4 v UFlow | 33.7 14.1 45.1 8.9 33.8
7 PooDLe 4 4 4 v RAFT | 34.2 15.0 45.5 9.0 34.5
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Table 5: Choice of subcrop area

Figure 5: Varying input resolution and global crop area as a
on small, large and all classes.

fraction of the full frame. Large resolutions prefer larger crops.

mark to accompany the WT dataset. We find that when pretrained on WT,;;, PooDLe outperforms
DoRA (Venkataramanan et al., 2024) by 3.4% and 1.1% mloU on linear readout and UperNet
finetuning, respectively. To generate the dataset, we use OpenSeeD (Zhang et al., 2023a), a strong
open-vocabulary segmentation model, to generate semantic segmentation masks for all videos in
WT,y as well as 3 new walkaround videos. We use the Swin-L (Liu et al., 2021) variant of OpenSeeD
finetuned on ADE20K semantic segmentation with a vocabulary of the 150 class labels from ADE20K
to generate masks. See Appendix D for visualizations and details of WT-Sem.

Class-based performance and IN1K initialization. Naturalistic videos have imbalanced class
representation and object sizes (Figure Ic; e.g., “road” occupies 21% of pixels while “bicycle”
only occupies 0.05% of pixels). Capturing information on these underrepresented classes is very
challenging. To further demonstrate this phenomenon, we categorize BDD classes as “small” if
they occupy < 1% of pixels and “large” for those that occupy > 1%. Separately, we define “rare”
as classes that appear in < 20% of images and “common” as those that appear in > 20%. Table 3
shows linear readout mloU for different class groupings, highlighting the impact of class and spatial
imbalance. Full class-level statistics and designations are in Appendix H. We observe that FlowE
performs well on large and common classes due to its dense loss, but struggles on small or rare
classes. Meanwhile, supervised IN1K, benefiting from balanced pretraining data, effectively learns
about smaller classes. PooDLe, with its unified objectives and spatial decoder module, significantly
outperforms other BDD-pretrained models across all class groupings, particularly on small and rare
classes. PooDLe, initialized from supervised IN1K weights, significantly improves upon supervised
IN1K on large classes, from 42.2% to 56.1%, due to the dense objective, while remaining competitive
with supervised IN1K on small classes.

4.3 ABLATION STUDIES

Table 4 shows ablation experiments, testing each of our contributions beginning from FlowE.
Models trained without the decoder use dilated convolutions in place of pooling operations, as
in FlowE (Xiong et al., 2021). Figure 3 shows how the dense and pooled objectives are composed
with and without the decoder. For the ablations, models are trained for 40 epochs on BDD and use a
reduced 256 x 512 resolution and [0.04, 0.11] area for the initial crops; we evaluate on BDD semantic
segmentation using linear readout.

We observe that adding Ly, alone has little benefit (row 2) and including either the decoder as a
spatial upsampler (row 3) or only the UNet-style lateral connections (row 4) also does not yield
much benefit. Row 5 achieves +3% mloU, showing that the top-down decoder is only effective when
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combined with the lateral connections for the full SDM, suggesting that preserving high-resolution
information as well as including some capacity for feature processing are both important. However,
when re-adding the pooled loss in addition to the decoder with lateral connections (row 7), we see a
substantial 5.4% mloU improvement. While the dense objective benefits from the full SDM, it has
an even greater synergistic effect with the pooled loss. This may be because the pooled objective
with subcrops can effectively learn about small objects while the full decoder helps propagate the
semantic representations through to the dense loss.

We also demonstrate that PooDLe is able to perform well even with self-supervised flow. We train
UFlow (Jonschkowski et al., 2020) model on KITTT (Geiger et al., 2013) and finetune it on BDD
resulting in only a 0.5% mloU loss compared to pretraining with RAFT. See Appendix A and J for
details and visualizations.

4.4  SPATIAL AND TEMPORAL CROPPING IN SELF-SUPERVISED VIDEO LEARNING

In this section, we study the effect of frame intervals and image cropping parameters used in data
augmentation. Without a 1:1 image-to-concept relationship like in iconic data, the visible area of each
frame can greatly affect representation learning. To study this, we perform 4 experiments varying: (1)
subcrop area, (2) global crop area, (3) number of subcrops, (4) temporal stride At. Crop and subcrop
area refer to the fraction of the frame taken during random-resized cropping. Figure 6 depicts how
crops transition from global to pseudo-iconic with decreasing crop area. Training recipe follows the
ablations in section 4.3 and results should be compared to row 7 in Table 4.

Varying subcrop area. First, we study how subcrop area affects our learned representations. We
train 4 PooDLes using different subcrop ranges and a fixed global crop area of [0.125, 0.25] at
resolution 256 x 512. Results are shown in Table 5 for all classes, as well as small and large class
subgroupings. We observe that larger subcrop areas result in worse performance, with a larger relative
drop for smaller classes. This is likely because larger crops contain multiple, smaller objects which
breaks the pseudo-iconic assumption and produces false invariances.

Varying global crop area Next, we vary both the global crop area from the raw video frame along
with the input resolution to study their effects on self-supervised pretraining. We select 3 different
resolutions, and sample the crop area from a Gaussian truncated to [0, 1], with varying mean and
o = 0.1. All three resolutions are trained with u = 0.125,0.275,0.425,0.725 with the 2 smaller
resolutions also trained at p = 0.05, 0.20 for higher granularity. Our results in Figure 5 show that
larger crop areas and higher input resolutions, together, are important for maximizing performance.
The largest model (512 x 1024) produces the best results and peaks at 1 = 0.425 while the other two
peak at smaller crop areas. The 256 x 512 model degrades more slowly in performance as crop area
increases in comparison to the 128 x 256 model.



Varying number of subcrops. We also study how varying the number of subcrops affects perfor-
mance. We train 4 PooDLes using K = 0, 3, 6,9 subcrops on BDD100K and evaluate using linear
readout, with results shown in Figure 7. Using 3 subcrops gives an initially large performance jump,
and using additional subcrops provides more modest gains. We decide to use K = 6 as our default
option to balance between performance and computational efficiency.

Effect of temporal stride during frame sampling. We study the effect of temporal stride by
training PooDLe with At = 0, 8,15, 30,45 on BDD100K, evaluated using linear readout (Figure 9).
Performance peaks at At = 15 and degrades only slightly at 8 and, 30 while dropping further at
values 0 and 45. When it is small, there is limited variance in object appearance, diminishing the
value of video data, and when it is too large, correspondence between frames decreases and optical
flow becomes unreliable. Note that for At = 0, we add jitter to the initial large crop by up to 10%
of the image size. Figure 8 shows frame sequences from 2 different videos, highlighting the high
variability of motion in BDD100K.

4.5 SUBCROPS AS PSEUDO-ICONIC TRAINING IMAGES
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Figure 10: Analysis of subcrops as pseudo-iconic views.

To understand the impact of pseudo-iconic subcrops on PooDLe’s performance, particularly on small
objects, we analyze their effect on object prevalence in the pooled objective. Using a simulated
circular object (Figure 102a), we calculate the probability of a subcrop capturing it as a pseudo-
iconic view, i.e. subcrop “hit”, and compare this to the probability of a pixel landing on the object,
emulating a pixel-level dense SSL objective. We count a subcrop hit if it reaches at least 5%
object coverage, which we justify as background classes generally have little visual variation and
consequently, minimal impact on the pooled representations. We extend this analysis to the BDD100K
semantic segmentation dataset, empirically simulating subcrops, and computing subcrop hit and
pixel probabilities for varying object sizes. The simulation results, illustrated in Figure 10b, show a
greater relative difference between subcrop hit and pixel probabilities for smaller objects, indicating
pseudo-iconic subcrops increase their prevalence in the pooled objective. This likely contributes
towards PooDLe’s improved performance on small object classes compared to dense SSL methods.
Further details of the analysis can be found in Appendix C.

5 CONCLUSION

Self-supervised learning on naturalistic videos presents many unsolved challenges, especially due to
the presence of high-resolution, multi-object crowded scenes with severe spatial imbalance. Iconic
methods rely on single-subject images, and dense methods struggle with the scale imbalance of objects.
We propose PooDLe that combines pooled region-invariance learning and dense flow-equivariance
learning objectives in a unified framework. PooDLe achieves state-of-the-art performance on down-
stream semantic segmentation and object detection evaluations compared to prior methods pretrained
on the same video datasets, particularly on recognizing small objects. Our study on the effects of
crop area, input resolution, and temporal stride also offers key insights on the design choices for
video self-supervised learning.
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APPENDIX
A IMPLEMENTATION DETAILS

Backbone. As discussed in the pretraining details, we use a Resnet-50 (He et al., 2016a) as our
backbone architecture. The projector model is a non-linear, 2-layer MLP (linear for pooled, 1 x 1
convolutions for dense) that has a 4096 hidden dimension and projects down to 256 dimensions. The
predictor is the same network with 256 — 4096 — 256 channels. We follow BYOL (Grill et al., 2020)
with a momentum starting at 0.996 and increasing to 1 throughout training.

Decoder details. The decoder uses a single Bottleneck block from the ResNet architecture with
a 8x downsampling ratio in the number of channels. Upsampling in the decoder is 2x and the
lateral connection is a single linear convolutional layer that up-projects the input latent to match the
decoder channels (1024 — 2048 in the first decoder block and 512 — 2048 for the second block).
As mentioned, 2 decoder blocks are used to achieve a total of 4 x upsampling.

Supervised and self-supervised flow prediction. Flow is predicted using a supervised off-the-shelf
RAFT model or an unsupervised UFlow (Jonschkowski et al., 2020) model that we train ourselves.
For unsupervised training, we exactly follow UFlow and train on the KITTI (Geiger et al., 2013)
dataset before finetuning on BDD100k (Yu et al., 2020) for 100,000 steps on daytime-only videos.
The training and inference resolutions were set to 256 x 512 to better match the inference setting.
KITTT used adjacent frames (10Hz video) while BDD frames were sampled with a temporal stride of
10 (30Hz video).

Local cropping details. X' = 6 paired local crops are sampled using the methods described.
Cropping is performed using RandomResizedCrop with an output resolution of 192 x 192. Jitter is
10% of the input image size and a standard aspect ratio range of [3/4,4/3] is used.

Loss details. We sum our 2 loss functions directly and give them equal weight. The loss computa-
tion and warping function were applied to representations after reversing the affine transform and
resizing to the input image resolution. This is to take full advantage of high resolution flow like
in FlowE (Xiong et al., 2021). We also use flow-based occlusion to prevent misaligning occluded
regions without correspondence. We use the same occlusion formulation as DDFlow (Liu et al.,
2019) and parameters a; = 0.1, ay = 0.5. We also mask out regions that are not visible after affine
transformations for Lgense-

Our loss is symmetrical: we reverse the x; and x4 A so that both are encoded by the online weights
and used for optimization at each training step.

Optimization details. AdamW is used as the optimizer and a weight decay value of 0.01. A learning
rate of 5e — 4 is used with 32 GPUs and 4 image pairs per GPU for a batch size total of 128. Cosine
learning rate decay is used with a schedule for 300 epochs, despite early termination due to compute
limitations. LR warmup is used for 2 training epochs. Full £1oat32 precision is used during
training.

Evaluation settings. For all BDD and Cityscapes semantic segmentation and object detection readout
tasks, we follow the setup described in FlowE (Xiong et al., 2021) for ResNet-based methods. For
ViT-based methods, we adopt those settings, but use AdamW for the optimizer with a learning rate of
3e — 5 and weight decay of 0.05, and a crop size of 512 x 512 rather than the normal 512 x 1024 to
accommodate the square aspect ratio used in ViT pretraining, following the semantic segmentation
linear readout setup described in iBOT (Zhou et al., 2021). In addition, ViT-based methods require
sliding window inference in order to achieve performance that is competitive with convolution-based
methods.

For ADE20K and WT-Sem linear readout, we simply use the respective BDD linear readout settings
for ResNet and ViT methods. For ADE20K and WT-Sem UperNet finetuning, we follow the procedure
described in iBOT (Zhou et al., 2021) except we use a batch size of 4 for WT-Sem finetuning.

Ablation data sampling. For all ablation experiments, we employ repeated sampling like in MAE-
st (Feichtenhofer et al., 2022) which samples R frames each time a video is encountered for faster
data loading. Therefore, each pass through every video in the dataset counts as R epochs.
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B COMPUTE RESOURCES

The full model is trained on 16 A100s and takes about 30h for 100 epochs on BDD100K or 18min
per epoch. Walking Tours takes longer at 40min per epoch, as the number of training samples per
epoch is larger.

Ablation-sized experiments were run on 2 or 4 H100/A100 GPUs for a total of 40 epochs, taking
20—40h depending on the configuration.

C SUBCROP ANALYSIS

For the toy simulation of subcrops, we place a foreground object as a centered circle of varying size
within a 256 x 512 frame. We then simulate all possible subcrops of area A € [0.02,0.04,0.06, 0.08].
For each subcrop area, we compute subcrop hits, i.e. whether at least 5% of the subcrop contains the
object, using numerical grid-based integration. We compute the subcrop hit probability, or subcrop
hits over valid subcrops, averaged across subcrop areas, as well as the pixel probability, or object
pixels over total image pixels.

We also emulate our training procedure for our empirical simulation of subcrops. For each of the
7,000 images in the BDD100K semantic segmentation training dataset, we sample two global crops
with area sampled from U[0.16, 0.45] and for each global crop, 4096 subcrops with area sampled
from U[0.02,0.03]. We compute subcrop probability and pixel probability independently for the
pixels of each foreground class: pole, traffic light, traffic sign, person, rider, car, truck, bus, train,
motorcycle, bicycle. We then group the results into 10% quantile bins by object size (i.e. pixel
proportions) and average the subcrop and pixel probabilities. We utilize a slightly different subcrop
area range in the empirical simulation because our two-step global crop and subcrop procedure results
in a logarithmic-like distribution.
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Figure 11: Relative change in local crop region class assignments relative to per-pixel class distribu-
tion.

We hypothesize that PooDLe’s improvement on spatially underrepresented classes, as shown in
Table 10, is due to this subcrop effect. To quantify this effect on real data, we perform a similar
exercise as above on the BDD100K semantic segmentation training set. We sample subcrops following
our method and assign a class label to each subcrop. If over 10% of the subcrop is a foreground class
(not road, sky, building, vegetation, sidewalk, fence, terrain), then we label the subcrop as the majority
foreground class. Otherwise, the majority background class label is assigned. In Figure 11, we show
the relative change in class distribution when using this subcrop class assignment. Foreground classes
(green) increase in occurrence while background classes (blue) decrease in frequency, besides road.

16



D WALKING TOURS SEMANTIC BENCHMARK
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Figure 12: Analysis of WT-Sem in comparison to ADE20K (Zhou et al., 2017) by frequency of each
class by pixels occupied (a) or frames present (b) and number of unique classes in each frame (c).

We create the WT-Sem benchmark by sampling a frame every 2 seconds from each of the 10 videos
in WT,; as well as 3 new walkaround videos. The new walkaround videos are filmed in Rome, Torun,
and Poznan, sourced from the same YouTube channel as WT (Venkataramanan et al., 2024) under
the Creative Commons (CC-BY) license. The Swin-L variant of OpenSeed (Zhang et al., 2023a),
pretrained on COCO (Lin et al., 2014) and Objects365 (Shao et al., 2019) and finetuned on ADE20K,
is used to generate semantic segmentation masks. We utilize the 25,910 frames sourced from WTy;
as the training set and the 6,170 frames sourced from the 3 new videos as the validation set. Figure 12
shows our analysis of WT-Sem in comparison to ADE20K (Zhou et al., 2017), where we observe that
both datasets have long-tailed class distributions and WT-Sem has slightly higher number of unique
classes per frame. We also visualize examples from the WT-Sem benchmark in Figure 13.
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Figure 13: Visualizations of images and associated semantic segmentation masks from the WT-Sem
benchmark.
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E ADDITIONAL VISUALIZATIONS

We provide additional visualizations of results on our evaluated benchmarks: BDD100K (Yu et al.,
2020) semantic segmentation (Figure 14), object detection (Figure 15) and ADE20K semantic
segmentation (Figure 16). Once again, we note that PooDLe produces segmentation maps with
clearer boundaries while also effectively capturing small objects.
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Figure 14: Visualizations of semantic segmentation masks for BDD linear readout, Cityscapes linear
readout, and Cityscapes UperNet readout.
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Figure 15: Visualizations of object detection bounding boxes for BDD FPN readout.
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Figure 16: Visualizations of semantic segmentation masks for ADE UperNet finetuning.

F ACCURACY VALUES FOR CLASS BREAKDOWN AND ABLATIONS

Table 6: Accuracy values for Table 3, class breakdowns

Method Pretrain | All | Small Large | Rare Common
DINO BDD 86.8 12.3 88.3 2.3 87.8
DenseCL BDD 84.9 2.0 86.6 0.0 86.0
DoRA BDD 88.1 19.3 89.5 7.2 89.1
FlowE BDD 88.5 18.2 89.9 32.0 89.2
PooDLe BDD 89.2 33.6 90.3 | 34.2 89.9
Supervised INIK 84.7 36.9 85.3 23.8 85.1
PooDLe BDD* 90.7 35.6 91.2 | 46.9 91.2

Table 7: Accuray values for Table 4, ablations

Variant | Dense Pool Top-Down Lateral Flow | All | Small Large | Rare Common
1 FlowE v RAFT | 85.0 22.8 86.3 6.1 86.0
2 v v RAFT | 86.2 14.2 87.6 6.3 87.1
3 v v v RAFT | 86.8 11.9 87.7 13.6 87.7
4 v v v RAFT | 86.6 22.1 87.9 16.9 87.5
5 v v v RAFT | 84.2 25.5 85.3 28.2 84.9
6 PooDLet v v v v UFlow | 86.0 26.4 87.2 29.6 86.7
7 PooDLe v v v v RAFT | 86.5 26.6 87.7 28.5 87.1
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G ADDITIONAL EVALUATION RESULTS

Table 8: Additional BDD semantic segmentation (SemSeg) and object detection (Det) readout
evaluations. All settings are conducted with a frozen backbone. * BYOL results are taken from
FlowE (Xiong et al., 2021) and used DeepLab v3 (Chen et al., 2017) in-place of Upernet (Xiao et al.,
2018). *Pretrained on BDD, initialized with supervised ImageNet weights.

BDD100K Sem. Seg. BDD100K Obj. Det. Cityscapes Sem. Seg
. Linear UperNet Det C4 FPN Linear UperNet

Method Arch  Ep. Pretrain mloU Acc mloU  Acc mAP mAP mloU Acc mloU Acc

Scratch R50 - - |97 550 26.1 812 | 0.0 771 98 580 30.7 84.1
PooDLe R50 100 BDD | 392 892 499 918 49 252 | 472 902 60.7 93.5
Supervised R50 600 INIK 36.7 847 552 920 3.6 249 46.8 874 63.4 93.7
BYOL (Grill et al., 2020)* R50 1000 IN1K 28.3 - 52.4 - 2.8 26.0 39.9 - 60.3 -
DenseCL (Wang et al., 2021b)  R50 200 INIK 213 827 528 91.6 0.3 25.0 273 84.0 63.7 93.7
Supervised ViT-S 300 INIK 419 885 509 914 - - 46.8 874 63.4 93.7
DINO (Caron et al., 2021) ViT-S 800 INIK 385 88.1 523 920 - - 47.1 903 63.6 94.0
iBOT (Zhou et al., 2021) ViT-S 800 INIK 444  89.6 542 922 - - 521 915 65.3 94.3
PooDLe R50 100 BDD* 4.7 90.7 541 927 39 28.0 520 915 65.1 94.4

We compare PooDLe against ImageNet-pretrained baselines in Table 8 and observe that PooDLe
outperforms most baselines except iBOT and ImageNet supervised ViT. This result is encouraging,
as pretraining on naturalistic video is more challenging due to spatial and class imbalance, yet is
also a more realistic setting that enables the use of broader sets of usable data. Furthermore, we note
that pretraining on class-balanced data such as ImageNet particularly benefits mloU, which weighs
all classes equally despite some classes only appearing in a tiny proportion of pixels in evaluation.
Finally, PooDLe pretrained on BDD with weights initialized from the ImageNet supervised checkpoint
surpasses all ImageNet-pretrained baselines on linear semantic segmentation.

H PER-CLASS EVALUATION RESULTS

Table 9: ToU per class on BDD semantic segmentation linear readout. *Pretrained on BDD, initialized
with supervised ImageNet weights.

Method Pretrain‘ Rd Sky Bldg Veg Car Bus Fence Truck Wall S-walk Terrain Train Pole Bicycle Person M-cycle Tr. Sign Rider Tr. Light

DINO BDD 886 930 723 773 737 0.8 1.7 53 5.1 385 375 0 8.1 0 19.6 0 13.4 0 17.7
DenseCL  BDD 820 882 683 726 63.0 0 1.5 0.5 0 17.7 72 0 0.3 0 0.1 0 1.1 0 9.4
DoRA BDD 899 936 754 799 76.6 5.1 17.9 11.0 10.8 44.6 427 0 133 0.7 252 0 20.5 0 239
FlowE BDD 90.6 929 758 79.6 808 329 235 22.7 153 45.7 324 0 129 11.8 28.7 4.1 159 0 12.1
PooDLe  BDD 913 935 770 804 817 34.0 294 243 172 49.6 38.1 0 243 18.0 352 29 26.6 0 212
Supv. IN 79.8 888 700 772 726 249 21.8 14.4 72 184 31.8 0 228 36.8 40.2 19.5 31.8 82 31.2
PooDLe  BDD* 92.6 940 803 822 848 547 349 334 178 56.3 422 0 257 i 41.5 LT 39.0 0.1 352

Table 10: Defined groupings and statistics of classes in the BDD semantic segmentation dataset.
L=Large, S=Small, C=Common, R=Rare.

‘ Rd Sky Bldg Veg Car Bus Fence Truck Wall S-walk Terrain Train Pole Bicycle Person M-cycle Tr.Sign Rider Tr. Light

AvgPix. % /Im. | 220 182 150 144 84 37 34 32 3.1 3.1 2.8 2.1 1.0 0.8 0.7 0.6 0.5 0.4 0.4
Total % of Pix. 213 173 132 132 8.1 0.6 1.0 1.0 0.5 2.0 1.0 00 09 0.1 0.3 0.0 03 0.0 0.2
Total % of Im. 965 948 884 917 973 150 30.6 305 154 66.7 36.7 07 95.0 6.4 34.7 38 75.3 52 47.1
Size Grp. L L L L L L L L L L L L S S S S S S S
Freq. Grp. C C C C C R C C R C C R C R C R C R C

We provide a breakdown of IoU per class on BDD semantic segmentation linear readout in Table 9.
In Table 10, we also provide dataset-level statistics for each class computed over the training split of
7,000 images in the BDD semantic segmentation dataset, namely average pixel percentage per image,
total percentage of pixels over the dataset and total percentage of images that they appear in over
the dataset. Size and frequency groupings are then independently defined using these statistics and
used in Table 3. A class is considered ‘Large’ (L) if its average pixel percentage per image is > 1%
and ‘Small’ (S) otherwise. Separately, we define a class as ‘Common’ (C) if the total percentage of
images it appears in is > 20% and ‘Rare’ (R) otherwise. Notably, PooDLe achieves significant gains
on small classes such as ‘Pole’, ‘Bicycle’, ‘Traffic Sign’, ‘Traffic Light’. Methods trained on BDD
underperform supervised IN1K on classes rare in BDD such as ‘Rider’, likely because IN1K offers
both abundant and iconic images of these object categories.
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I BACKBONE COMPUTATION COST

We provide a table detailing the number of FLOPs associated with various SSL methods and
backbones. We note that our SDM is by far the most efficient upsampling approach for dense
representation learning methods.

Architecture Associated Methods \ GFLOPs
ResNet-50 DINO-R50 433
ResNet-50 + SDM PooDLe 60.5
ResNet-50 + FPN decoder PixPro 124.4
ResNet-50 + dilated convolutions FlowE, DINO, DenseCL 200.7
ViT-S/16 DINO, iBOT, DoRA, MAE 82.9

Table 11: Comparison of different backbones, their associated methods, and computational require-
ments in GFLOPs.
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J  FLOW VISUALIZATIONS

Source Target RAFT UFlow

Figure 17: Comparison of predicted optical flow from RAFT (supervised) and UFlow (unsupervised).

In Figure 17, we compare the predicted flow maps generated from RAFT (Teed & Deng, 2020),
an off-the-shelf supervised model, and our own unsupervised UFlow (Jonschkowski et al., 2020)
model. The frame pairs are randomly sampled with At € [15, 30]. We do note that self-supervised
flow, particularly on BDD100K, may exhibit noisy or splotchy results. This is possibly due to the
inconsistent motion and large dark regions that do not offer sufficient photometric supervisory signal.
This is in contrast to RAFT (Teed & Deng, 2020) which learns sharp edges like from supervised
labels. Nevertheless, we find that this self-supervised flow is sufficient for training PooDLe.
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