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Abstract

Object recognition and motion understanding are key components of perception that complement
each other. While self-supervised learning methods have shown promise in their ability to learn from
unlabeled data, they have primarily focused on obtaining rich representations for either recognition or
motion rather than both in tandem. On the other hand, latent dynamics modeling has been used in
decision making to learn latent representations of observations and their transformations over time for
control and planning tasks. In this work, we present Midway Network, a new self-supervised learning
architecture that is the first to learn strong visual representations for both object recognition and motion
understanding solely from natural videos, by extending latent dynamics modeling to this domain. Midway
Network leverages a midway top-down path to infer motion latents between video frames, as well as a
dense forward prediction objective and hierarchical structure to tackle the complex, multi-object scenes of
natural videos. We demonstrate that after pretraining on two large-scale natural video datasets, Midway
Network achieves strong performance on both semantic segmentation and optical flow tasks relative to
prior self-supervised learning methods. We also show that Midway Network’s learned dynamics can
capture high-level correspondence via a novel analysis method based on forward feature perturbation.

1 Introduction

Animals and humans are able to recognize objects and predict their motion by observing the dynamic world with
little to no supervision. Inspired by this capability, research in deep learning has made significant progress in
emulating “learning by observing.” Prior work has shown that observing objects through time via video streams
can serve as a powerful learning signal (Foldiak, 1991; Wiskott and Sejnowski, 2002; Wang and Gupta, 2015;
Srivastava et al., 2015). Others have shown that self-supervised learning (SSL) methods can learn strong visual
representations from vast amounts of unlabeled data (Goyal et al.; 2022; Oquab et al., 2023; Fan et al., 2025).
Among a number of perception abilities attained via observation, object recognition and motion under—
standing are two intertwined core components. Recognition allows one to identify the same object across views
to establish correspondence; conversely, motion links the same object across spacetime to enable learning of
its invariant properties (Simonyan and Zisserman, 2014; Xu and Wang, 2021). However, most prior work on
visual SSL has focused on learning representations for either object recognition or motion understanding, but
not both in tandem. Image SSL methods (Chen et al., 2020b; He et al., 2020; Grill et al., 2020; Caron et al.,
021; Assran et al., 2023) have demonstrated strong capablhtles in learmng semantic representatlons but
most operate on 1conlc, i.e., single-subject, image datasets which are human-curated and additionally lack
temporal information to learn motion. More recently, some have proposed performing SSL on natural videos,
which depict real-world scenes and can approximate the observational perspective of animals. Nonetheless,
these methods either do not utilize motion transformations for training (Gordon et al., 2020; Venkataramanan
et al., 2024) or rely on external optical flow networks to incorporate motion as a learning signal (Xiong
et al., 2021; Wang et al., 2025). On the other hand, self-supervised methods that focus on learning motion
as a plxel correspondence (Liu et al., 2019; Jonschkowski et al., 2020; Luo et al., 2021; Stone et al., 2021)
or cross-view reconstruction task (Weinzaepfel et al., 2023) result in poor semantic representations. Only
MC-JEPA (Bardes et al., 2023) aims to learn both semantic and motion features, but this method still
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Figure 1: (a) Traditional SSL methods focus on learning representations for object recognition and lean on
curated, iconic image data for training. (b) Dense SSL methods extend training to natural videos, but either
do not utilize motion transformations (Gordon et al., 2020; Venkataramanan et al., 2024) for training or rely
on external networks to incorporate motion (Xiong et al., 2021; Wang et al., 2025). (c) Our proposed Midway
Network jointly learns representations of semantics and motion from solely natural videos via latent dynamics
modeling. The learned image-level representations can be used towards downstream object recognition and
motion understanding tasks.

latents
4
: }a—]

Zt+1

depends on curated, iconic image data for training. How can we jointly learn rich representations for object
recognition and motion understanding solely from natural videos?

Theories in neuroscience have proposed that animals use internal inverse and forward dynamics models and
future sensory prediction, i.e., predictive coding, to perform motor control, planning, and perception (Shidara
et al., 1993; Miall and Wolpert, 1996; Wolpert et al., 1998; Rao and Ballard, 1999; Friston, 2005). Works in
decision making have also suggested using latent dynamics modeling for representation learning, but focus on
control and planning tasks in simulated and lab environments (Brandfonbrener et al., 2023; Schmidt and Jiang,
2024; Cui et al., 2024). Together, these studies point to latent dynamics modeling as a natural mechanism
for learning useful representations of visual observations and their transformations over time, e.g., motion.

Building on this observation, we propose Midway Network, a new SSL architecture that is the first to
learn both recognition and motion understanding solely from natural videos, by extending latent dynamics
modeling to this domain. Midway Network is centered around a midway top-down path, which infers motion
latents between video frames via inverse dynamics that are subsequently used to condition the forward
predictions. We rely on two design choices in order to better model the complex, multi-object scenes in natural
videos. First, we formulate the forward prediction objective over dense features, rather than global features
like in previous works (Cui et al., 2024). Second, Midway Network introduces a hierarchical architecture
with backward and lateral layers to refine the motion latents and representations over multiple feature levels,
inspired by optical flow networks (Sun et al., 2018).

Midway Network shows strong capability of learning image-level representations for object recognition and
motion understanding after pretraining on large-scale natural video datasets. In particular, Midway Network
outperforms prior SSL methods on optical flow tasks while also achieving competitive performance on semantic
segmentation tasks for both BDD100K (Yu et al., 2020) and Walking Tours (Venkataramanan et al., 2024)
pretraining. We also show that Midway Network’s dynamics models can capture high-level correspondence,
supported by evidence from our novel analysis method based on forwarded feature perturbation. Finally, our ab-
lation studies demonstrate that our hierarchical design components are important for downstream performance.

To summarize, our contributions are:

o We present Midway Network, a novel SSL architecture that is the first to learn rich image-level represen-
tations for object recognition and motion understanding solely from natural videos. It leverages a dense
forward prediction objective and hierarchical design to better capture the complexity of natural videos.

e We show that Midway Network achieves strong performance on both optical flow (FlyingThings, MPI-Sintel)
and semantic segmentation (BDD100K, CityScapes, WT-Sem, ADE20K) when pretrained on natural video
datasets, compared to prior SSL baselines which only attain substantial performance in one of the two tasks.

e We demonstrate Midway Network’s ability to capture high-level correspondences between video frames
with evidence from our novel analysis method based on forwarded feature perturbation.



2 Related Work

Predictive modeling. This work builds upon research in predictive modeling from neuroscience and
deep learning. Many works in neuroscience have explored predictive coding, a theory positing how the
brain continuously predicts future sensory inputs with hierarchical networks to perform perception (Rao
and Ballard, 1999; Rao and Sejnowski, 1999; Lee and Mumford, 2003; Friston, 2005; Summerfield et al.,
2006). In particular, Friston’s theory (Friston, 2005) describes how perception may be spht into recogmtzon,
inferring causes of sensory inputs, which is reminiscent of representation learning and inverse dynamics, and
generation, predicting (future) sensory inputs from causes, which is akin to forward dynamics. Biological
evidence of predictive coding has also been found, such as in monkey neural cells after receptive field
excitation (Livingstone, 1998) and in functional magnetic resonance imaging data of human subjects following
visual stimuli under varying expectation levels (Egner et al., 2010). In deep learning, prior works such as
PredNet (Chalasani and Principe, 2013; Lotter et al.; 2017) have proposed architectures inspired by predictive
coding to perform video prediction. More generally, there has been a line of research in leveraging prediction
of future frames in videos as a learning objective (Softky, 1995; Finn et al., 2016; Villegas et al., 2018;
Feichtenhofer et al., 2022). Others have developed predictive modeling methods that perform video prediction
in latent feature space (Vondrick et al., 2016; Bardes et al., 2024). Midway Network is inspired by these ideas,
extending dynamics-conditioned predictive modeling to natural videos with a new hierarchical architecture in
order to learn rich representations for object recognition and motion understanding.

Dynamics modeling. Prior works have suggested that animals use internal inverse and forward dynamics
models for motor control and planning (Wolpert et al., 1995; Miall and Wolpert, 1996; Flanagan and Wing,
1997; Wolpert et al., 1998; Kitazawa et al., 1998; ]oidan and Rumelhart, 2013). Inverse and forward dynamics
have subsequently been used in works hke DynaMo (Cui et al., 2(,)24) to learn latent visual and action
representations for robotic manipulation and control tasks (Brandfonbrener et al., 2023; Chen et al.,

Ye et al., 2025), but they have only focused on simulated or controlled environments. World models are a
concurrent line of work which learn a latent dynamics model of the environment to enable efficient policy
learning and long-horizon planning, but prior works such as Dreamer and V JEPA 2 have relied on ground
truth reward signals or actions (Ha and Schmidhuber, 2018; Hafner et al., 2019, 2020; Schwarzer et al., 2021;
Hu et al., 2023; Assran et al., 2025). In particular, DINO WM (Zhou et ai 2024) proposed training a forward
dynanncs predictor over DINOV2 (Oquab et al., 2023) patch features, but this method also required access to
ground truth actions. More recently, generative models, such as the Genie series, have emerged as a promising
approach for learning world models and interactive environments (Menapace et al., 2022; Yang et al., 2024;
Parker-Holder et al., 2024; Sun et al., 2024). Midway Network utilizes inverse and forward dynamics to tackle
a new problem: learning rich image-level representations for recognition and motion understanding solely
from natural videos. It leverages dense forward prediction and a new hierarchical refinement architecture to
capture the complex, multi-object scenes in this data domain.

Visual self-supervised learning. SSL on visual data has enjoyed a long history, from denoising autoen-
coders (Vincent et al., 2010; Pathak et al., 2016; Chen et al., 2020a; He et al., 2022) to joint embedding (Grill
et al., 2020; Chen et al., 2020b; He et al., 2020; Caron et (11 , 2021; Bardes et al., 2022) and joint-embedding
predictive (Assran et al., 2023; Garrido (,1 al., 2024) rnodels. These works primarily aim to learn semantic
representations from iconic, single-subject images. Following their success, others have proposed methods
to learn from dense, multi-subject images by leveraging losses on local features (Wang et al., 2021; Xie
et al., 2021; Bardes et al., 2022; Zhang et al., 2023). While prior work uses motion from natural videos
to learn visual representations (Xiong et al., 2021; Wang et al., 2025), these approaches either rely on
external supervised flow networks or use motion only to construct training views (Jabri et al., 2020; Gordon
et al., 2020; Venkataramanan et al., 2024). In contrast, our work also jointly learns representations of the
motion transformations themselves. A separate line of work focuses on learning motion as a cross-view
pixel correspondence (Liu et al.; 2019; Jonschkowski et al., 2020; Luo et al., ; Stone et al., 2021) o

reconstruction task (Weinzaepfel et al., 2022, 2023); however7 the resulting features have poor recognltlon
capability. Video SSL methods (Tong et al., 2022; Wei et al., 2022; Bardes et al., 2024) tackle learning
clip-level representations for action recognition tasks, whereas Midway Network and our baselines target
image-level representations. While a few video SSL works (Qing et al., 2022) also explore hierarchical designs
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Figure 2: Midway Network employs a hierarchical design in which the midway path infers motion latents m
between source and target features in a top-down manner. Within each level of this hierarchy, backward layers
with top-down and lateral connections refine the source features z!. Forward prediction blocks, conditioned
on the refined features v! and motion latents m!*!, predict the dense target features z! 11, and the prediction
loss Lgyn jointly trains all components at each level.

for learning, these hierarchies are only related to the temporal structure of videos for sampling training pairs.
Finally, MC-JEPA (Bardes et al., 2023) seeks to learn both semantic and motion features, but unlike Midway
Network, it still relies on curated, iconic image data (i.e. ImageNet) for training.

3 Midway Network

We present Midway Network, a new SSL architecture that uses latent dynamics modeling to learn representa-
tions for object recognition and motion understanding solely from natural videos. At the heart of Midway
Network is a midway path that infers motion latents to describe the transformation between a source and
target video frame. The visual encoder extracts features from the raw video frames, and the backward
layers refine these features with lower-level information in a top-down manner. The forward dynamics model,
conditioned on the source frame backward features and motion latents, predicts the dense target frame
features, and the resulting prediction error is used to jointly train all components of the model. Midway
Network employs a hierarchical design, where the forward prediction objective is placed at multiple feature
levels, and the forward predictions from higher feature levels are used as the input to refine the motion
latents at lower levels. The architecture is illustrated in Figure 2, and the computations for the dense forward
prediction objective are summarized in Algorithm 1.

Preliminaries. The model inputs are pairs of source and target video frames, x; and x;41. Following the
SSL knowledge distillation paradigm (Grill et al., 2020; Caron et al., 2021), we encode the video frames into
features using source and target networks, z; = fg(x;) and 2,11 = f3(241), where 0 is updated using an
exponential moving average of the student parameters §. Midway Network operates at multiple feature levels,
so we use the notation that z! are the features of the I-th level, ordered from lowest level 1 to highest level L.

Motion latents via midway path. The midway path aims to learn motion latents that capture the
transformation between observations over time via inverse dynamics. Specifically, the midway inverse dynamics
model is a transformer that takes in previous motion latents m'*! and the source and target features 2!

and 2} 41 as input, and outputs the motion latents m! for the next level. The motion latents accumulate
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over levels, i.e. m! = midway(m!*1, 2! 2! +1) +m!*l. The initial motion latents are learnable tokens. For

every level besides the top level, we use the output of the higher level’s forward prediction, 2!, instead of the
features z! as input. Thus, the model learns to refine the motion latents in a top-down manner, conditioned
on the higher-level predrctrons This design is motivated by how prior optical flow methods (Sun et al., 2018;
Jonschkowski et al., 2020) would use intermediate flow estimates to warp features before computrng cost

volumes, which Would subsequently be used to refine flow predictions at lower levels.

Backward features. Prior works, from Ladder Algorithm 1 Dense forward prediction objective.
Networks (Valpola, 2015) to PooDLe (Wang et al.,
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Dense forward prediction. The forward dynamics model is also a transformer that takes in backward
features v! and motion latents m'*! as input, concatenated along the spatial dimension, and predicts the
dense features of the target frame. The dense forward prediction objective is then to minimize the prediction
error between the predicted features 2! 11 and the realized target features 2L +1- The prediction error is the

mean squared error between the normalized dense predictions and targets:

dyn = ||Zt+1 2t+1H§' (1)

Forward prediction gating. In a standard transformer block, the input token :
value is always propagated forward due to the residual connection — this biases

the computation towards the identity mapping. However, we would like the . ‘
forward transformer model to learn whether the object captured by an input Caili MDA

. o . Unit Attention
token has moved, i.e., if its features can be computed from tokens at other spatial
locations, rather than defaulting to the identity location. Thus, we introduce T_E[Tjj
learnable gating units for the residual connection in the transformer layers of v,
the forward dynamics model. The gating unit is a multi-layer perceptron that m
learns a vector-wise gating weight between 0 and 1 for the residual connection 4

of each input token of v;. Specifically, the transformer block is modified with )
gating unit ¢ such that the input to the feedforward network, &, is computed as: Figure 3: Attention layer
with gating unit on v;.
h = g(z) - z + Attention(x). (2)

We do not use gating units in the first transformer block to provide sufficient information for initial estimates
of attention, nor do we use them for the motion latents m to fully propagate the motion information. In
our experiments, we find that the gating units improve semantic feature quality and interpretability of the
learned dynamics models, as shown in Section 4.4.

Invariance objective. We utilize an additional joint-embedding invariance objective over smaller crops
to encourage the visual encoder to learn semantic features, following PooDLe (Wang et al., 2025). In our
experiments, we use the DINO (Caron et al., 2021) objective with projection heads on top of the source and
target networks. This can be viewed as a form of regularization for the features that are subsequently used in
the latent dynamics modeling.



4 Experiments

We evaluate Midway Network by pretraining on large-scale natural video datasets, BDD100K (Yu et al., 2020)
and Walkings Tours (WT) (Venkataramanan et al.; 2024), and evaluating the learned image and motion latent
representations on downstream semantic segmentation and optical flow tasks. In our experiments, we study
whether Midway Network learns good visual features for both object recognition and motion understanding.
We further analyze how each component of Midway Network contributes to downstream performance and
what information does its dynamics models capture.

4.1 Setup

Pretraining. We pretrain Midway Network on two large-scale video datasets from different domains.
BDD100K (Yu et al., 2020) is a dataset of 100,000 dashcam driving videos collected in varying weather,
lighting, and time-of-day conditions from New York and the San Francisco Bay Area. Each video is 40
seconds long at 720p and 30 fps. We pretrain on all 70,000 videos in the train split. Walking Tours
(WT) (Venkataramanan et al., 2024) is a dataset of 10 first-person YouTube walking videos collected in
various cities of Europe and Asia, with outdoor and indoor scenes, and natural transitions in lighting and
location. The videos range from 59 minutes to 2 hours 55 minutes, at 720p and 30 fps. We pretrain on the
Venice video following DoRA (Venkataramanan et al., 2024)’s original setup.!

Downstream evaluations. We evaluate Midway Network’s pretrained representations on semantic seg-
mentation tasks to gauge object recognition capability. For BDD pretraining, we perform linear and UperNet
readout on the BDD and CityScapes (Cordts et al., 2016) benchmarks following FlowE (Xiong et al., 2021).
For WT pretraining, we perform UperNet finetuning on the WT-Sem (Wang et al., 2025) and ADE20K (Zhou
et al., 2017) benchmarks following DoRA (Venkataramanan et al., 2024) and PooDLe (Wang et al., 2025).
For linear readout only, we use the backward layer features following PooDLe. We also evaluate Midway
Network on optical flow tasks to assess motion understanding. We follow CroCo v2 (Weinzaepfel et al.,
2023)’s finetuning evaluation protocol, replacing their binocular decoder with our midway inverse dynamics
and forward dynamics models — baselines without binocular components also use the dynamics models, but
with randomly initialized weights. We finetune models pretrained on BDD on TartanAir (Wang et al., 2020),
MPI-Sintel (Butler et al., 2012), FlyingThings (Mayer et al., 2016), and FlyingChairs (Dosovitskiy et al.,
2015) datasets, and evaluate on the corresponding validation splits of FlyingThings and MPI-Sintel. We
report mean intersection-over-union (mlIoU) and pixel-level accuracy (Acc) for semantic segmentation, and
endpoint error (EPE) for optical flow. More details on evaluation settings are provided in Appendix B.

Baselines. We compare Midway Network to iconic image SSL methods (DINO, iBOT (Caron et al., 2021;
Zhou et al.; 2021)), multi-object SSL methods (DoRA, PooDLe (Venkataramanan et al., 2024; Wang et al.,
2025)), and masked reconstruction methods (CroCo v2, VideoMAE, MAE (Weinzaepfel et al., 2023; Tong
et al., 2022; He et al., 2022)). DoRA uses 8-frame clips for training, VideoMAE uses 16-frame clips, and
iBOT and MAE use single frames. Midway Network and all other baselines learn from pairs of frames. We
also implement a modified version of DynaMo (Cui et al.,; 2024) that uses ViT-S as the encoder and includes
the DINO invariance objective. We use official implementations to pretrain the baselines on BDD and WT.
All baselines are trained on 224 x 224 resolution, except for PooDLe in Table 2, which uses 512 x 1024.

Implementation. We use ViT-S and ViT-B sized vision transformers for our visual encoders. For the
midway inverse dynamics, forward dynamics, and backward models, we use decoder-only transformers (Vaswani
et al., 2017), with the backward layers using cross-attention (Lin et al., 2022) blocks. We largely follow the
guidelines provided by PooDLe (Wang et al., 2025) on data sampling from natural videos. Specifically, we
sample pairs of frames 0.5 ~ 1 seconds apart, one per video per epoch for BDD, and 0.5 seconds apart, for
all possible pairs per epoch for WT-Venice. For the dense forward prediction objective, we sample larger
crops of area range [0.2,0.4] at the same location for both frames. We take smaller initial crops of area range
[0.05,0.2] at the same location for both frames, from which global and local crops are sampled for the DINO

1Due to computational constraints, we did not pretrain on all 10 videos.
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Figure 4: Visualization of BDD semantic segmentation UperNet readout. Midway Network is able to produce
cleaner object boundaries, particularly for the cyclist on the right.

joint-embedding objective. All crops are resized to 224 x 224 resolution. Appendix B provides more details
on implementation, compute resources, and comparisons of training cost across the different methods.

4.2 Semantic segmentation and optical flow results

Table 1: Semantic segmentation and optical flow evaluations for BDD100K 224 x 224 resolution pretraining.
Sem. Seg. is conducted with frozen backbone and optical flow is conducted with finetuning. 'DynaMo is
modified to use a ViT-S encoder and DINO objective.

BDD100K Sem. Seg. Cityscapes Sem. Seg. Optical Flow

Linear UperNet Linear UperNet FlyingThings MPI-Sintel
Method Arch  Ep. | 10U tAcc fmloU fAcc | tmloU tAce fmloU tAcc | JEPE (c) JEPE (f) JEPE (c) JEPE (f)
PooDLe (Wang et al., 2025) R50 300 35.1 87.8 474 91.0 44.8  89.0 59.2 934 - - - -
iBOT (Zhou et al., 2021) ViT-S 800 272 854 355  88.7 32.0 86.2 44.0  90.3 18.5 18.0 13.0 13.7
DINO (Caron et al., 2021) ViT-S 300 36.7 89.3 49.3  92.0 41.5 904 57.9 933 16.8 13.8 11.5 10.8
VideoMAE (Tong et al., 2022) ViT-S 300 7.8 50.3 10.9 58.6 6.4 44.9 11.7 62.9 16.2 16.1 7.2 7.6
CroCo v2 (Weinzaepfel et al., 2023) ViT-S 300 21.2  80.0 319 870 24.0 815 375  89.0 9.7 9.4 5.1 5.8
DoRA (Venkataramanan et al,, 2024)  ViT-S 300 30.4 87.2 40.8 90.0 36.2 88.2 51.3 91.9 16.5 15.1 11.5 11.9
DynaMo! (Cui et al., 2024) ViT-S 300 36.8 89.4 474 91.7 412 90.3 572  93.1 - - - -
Midway (enc. only) ViT-S 300 - - - - - - - - 16.6 13.5 11.7 10.9
Midway ViT-S 300 39.7 90.3 50.4 924 43.0 90.9 58.5 93.5 7.3 6.8 4.1 4.9
DINO (Caron et al., 2021) ViT-B 300 44.0 90.9 53.8 92.7 48.5 91.7 62.7 94.2 174 14.8 12.1 14.1
CroCo v2 (Weinzaepfel et al., 2023) ViT-B 300 16.3 72.4 26.5 84.4 18.2 75.0 28.9 84.6 6.1 5.8 3.0 3.8
Midway ViT-B 300 48.2 91.6 55.2 93.1 51.1 92.1 62.2  94.0 7.0 6.4 4.1 4.8

BDD100K pretraining. Table 1 shows results on BDD100K and CityScapes semantic segmentation, and
FlyingThings and MPI-Sintel optical flow benchmarks after BDD100K pretraining. Notably, Midway Network
is the only model to perform well on both semantic segmentation and optical flow tasks overall. For semantic
segmentation, Midway Network outperforms all baselines on BDD100K, and its learned visual features also
transfer well to CityScapes, where they are competitive with the best-performing baseline, PooDLe, which
relies on an external supervised optical flow network. Note that even without the backward network, our
model achieves 39.2 mIoU and 90.1 Acc on BDD100K linear readout, continuing to outperform the baselines.
Midway Network also surpasses all baselines’ performance on FlyingThings and MPI-Sintel optical flow. As
shown by Midway Network (enc. only), performance on optical flow drops drastically if we do not initialize
the midway inverse and forward dynamics models with the pretrained weights, indicating that the dynamics
models have learned features that are useful towards motion estimation. We also demonstrate that Midway
Network’s downstream performance also scales with larger model sizes, from ViT-S to ViT-B. While CroCo
v2 edges out Midway Network on optical flow for ViT-B, Midway Network does not suffer the same tradeoff
on semantic segmentation performance as CroCo v2. Figure 4 and Figure 5 compare predicted segmentation
masks for BDD100K, and optical flow for FlyingThings and MPI-Sintel, respectively, across different methods.



Table 2: Semantic segmentation and optical flow evaluations for WT-Venice 224 x 224 resolution pretraining.
Sem. Seg. and optical flow are conducted with finetuning. TPooDLe on 512 x 1024 resolution pretraining
from their original table (Wang et al., 2025). "iBOT results taken from DoRA (Venkataramanan et al., 2024).

WT-Sem Sem. Seg. | ADE20K Sem. Seg. Optical Flow
UperNet UperNet FlyingThings MPI-Sintel

Method Arch  Ep. | 410U TAcc tmloU TAcc IEPE (c) JEPE (f) |EPE (c) JEPE (f)
PooDLe' (Wang et al., 2025) R50 20 13.7 85.4 36.6 77.9 - - -

iBOT" (thul u,z 21) ViT-S 100 - - 33.9 - - - - -
MAE (He et al., 2022) ViT-S 100 8.9 81.5 24.1 71.4 17.6 16.4 11.1 11.8
VideoMAE (Inn et al., 2022) ViT-S 100 3.3 67.9 7.8 55.6 15.9 15.8 7.0 7.4
DINO (Caron et al., 2021) ViT-S 100 11.0 83.0 29.2 74.7 15.5 14.0 124 13.8
CroCo v2 (Weinzaey >|(| et al lZZ) ViT-S 100 11.3 84.4 32.0 75.7 9.6 9.1 5.9 6.4
DoRA (Venkataramanan et al.,, 2024)  ViT-S 100 13.6 85.7 35.2 T 17.9 13.3 12.4 12.4
Midway ViT-S 100 13.1 85.4 33.4 76.9 7.7 7.4 5.2 6.6

Walking Tours pretraining. Table 2 shows results on WT-Sem and ADE20K semantic segmentation,
and FlyingThings and MPI-Sintel optical flow benchmarks after WT-Venice pretraining. Again, Midway
Network is the only method to achieve strong, competitive performance on both semantic segmentation and
optical flow tasks. Note that PooDLe was pretrained at high resolution (512 x 1024) and utilized external
supervised optical flow networks. We include additional visualizations of predicted segmentation masks and
optical flow for WT-Venice pretraining in Appendix C.
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Figure 5: Visualization of FlyingThings and MPI-Sintel optical flow evaluations after finetuning. Midway
Network is able to generate more accurate optical flow predictions compared to CroCo v2.

4.3 Ablation studies

We perform a series of ablation studies, shown in Table 3, where we cumulatively add components of Midway
Network until we reach the full model. For the ablations, we pretrain variants of Midway Network on
BDD100K for 100 epochs and evaluate on BDD semantic segmentation with linear readout and on MPI-Sintel
optical flow (clean renderings) after finetuning on FlyingChairs and FlyingThings following CroCo V2 and
prior optical flow methods. For reference, we run 5 seeds for the full model (row 6), and obtain a standard
deviation of 0.06 on mIoU and 0.08 on EPE. More technical details are found in Appendix B.

First, we find that adding latent dynamics modeling immediately adds a large boost to performance (row
2). Next, we observe that the hierarchical structure of the backward network and multi-level learning work
together with motion latent refinement to provide further gains on both recognition and motion understanding
(row 5). Finally, using gating units improves recognition (row 6) as well as visual interpretability of the
learned dynamics, as shown in Figure 6. We also see that removing any of the introduced design components
from Midway Network harms performance by a decent margin (rows 7 - 9). Additional ablations on model
capacity are shown in Appendix A.



Table 3: Ablation studies on Midway Network components evaluated on BDD100K semantic segmentation
linear readout and MPI-Sintel optical flow finetuning.

Variant ‘ Latent Dynamics Backward Multi-Level Refinement Gating ‘ TmIoU |EPE
1 Base model 28.3 6.2
2 v 30.4 4.4
3 v v 30.0 5.0
4 v v v 30.4 5.2
5 v v v v 31.1 3.9
6 Full model v v v v v 31.5 4.1
7 No backward v v v v 30.4 3.7
8 No multi-level v v v v 30.3 5.2
9 No refinement v v v v 30.8 5.1

4.4 Analysis of dynamics

Source Target Heatmap Source Target Heatmap

Figure 6: Heatmaps from forwarded feature perturbation. Features are perturbed at green squares in Source,
which are also depicted in Target at the same location to highlight the motion between frames. Midway
Network without gating units exhibits identity bias (bottom right, red border).

To probe the extent to which Midway Network has learned dynamics after pretraining on natural videos,
we introduce a new analysis method based on forwarded feature perturbation. First, we encode a pair of
frames to get features z; and z;11 and compute motion latents m between them, as usual. Then, we sample
a random vector r ~ A(0,1) and "perturb" a selected spatial feature by associating r as a tangent vector
to the selected feature in the source frame. We perform forward prediction to propagate the perturbation
to the predicted target features’ tangent vectors — the propagation is done via forward mode automatic
differentiation. The cosine similarity between the random vector and the tangent vectors of the predicted
features then represents the sensitivity of each spatial feature in the target frame to the initial perturbation.
This process is repeated k times, and the similarity scores are averaged to obtain a final heatmap over the
target frame spatial locations. In Figure 6, we observe that the highest similarity regions in Target correctly
correspond with the initial perturbation locations in Source (green square), indicating that the dynamics
models can capture high-level correspondences. We also see that Midway Network without gating units
(bottom right, red border) learns an incorrect identity mapping where the highest similarity region is the
same location as the initial perturbation.

We may also use forwarded feature perturbation as a form of high-level tracking. First, for consecutive
pairs of frames, we compute perturbation heatmaps over the target spatial features by individually perturbing
each spatial feature in the source frame. Then, for the first frame of the video, we select an initial location
and take the top-5 locations in the next frame with the highest perturbation heatmap scores; from these



Midway forward
perturbation

DINO-IN1K
feature similarity

Midway forward
perturbation

5 ‘!"
J‘Ii""

DINO-IN1K tgann i
S v&H i A .
feature similarity pyud

Figure 7: High-level tracking using forwarded feature perturbation and/or feature similarity. Midway Network
is able to track high-level regions such as the cyclist’s foot (top row, pink square).

locations, we select the one with the highest feature similarity. This process repeats with the newly selected
location until we have a track across all frames. Figure 7 shows these tracking results in comparison to
selecting the next location based on highest feature similarity with DINO (Caron et al., 2021) pretrained on
ImageNet (IN1K). Despite being trained in latent space, Midway Network is able to roughly track high-level
regions over time, whereas the DINO-IN1K feature similarity baseline tracks quickly diverge.

5 Conclusion

Object recognition and motion understanding are complementary aspects of perception, yet most self-
supervised methods have focused on learning representations for only one facet. We aim to bridge this gap by
extending latent dynamics modeling to the natural video domain. In this work, we propose Midway Network,
the first self-supervised learning architecture to learn representations for both recognition and motion solely
from natural videos, leveraging an inverse dynamics midway path, a dense forward prediction objective,
and a hierarchical structure to capture the complex, multi-object scenes. Midway Network learns strong
image-level representations for both recognition and motion, and in many cases, outperforms prior approaches
on semantic segmentation and optical flow estimation. We have demonstrated that Midway Network can be
used across different video datasets and scales well with larger models — training on more diverse data and
continuing to scale model capacity could further improve performance. An exciting avenue for future work is
to leverage the motion and dynamics captured by Midway Network for real-world planning tasks. Possible
next steps towards this direction include incorporating action-labeled data and using Midway Network’s
forward dynamics predictor within a world modeling framework.
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Appendix
A Additional results

A.1 Longer pretraining

We provide additional experiments on WT-Venice pretraining below. Table 4 shows that Midway Network’s
downstream performance continues to improve with longer pretraining.

Table 4: Semantic segmentation and optical flow evaluations for additional experiments on WT-Venice
224 x 224 resolution pretraining. Sem. Seg. and optical flow are conducted with finetuning.

WT-Sem Sem. Seg. | ADE20K Sem. Seg. Optical Flow
UperNet UperNet FlyingThings MPI-Sintel
Method = Arch  Ep. | 11y tAcc tmloU tAcc |EPE (¢) |EPE (f) |EPE (c) |EPE (f)
Midway  ViT-S 100 13.1 85.4 334 76.9 7.7 7.4 5.2 6.6
Midway  ViT-S 300 14.8 86.5 36.9 78.2 7.3 6.9 4.0 5.1

A.2 Model capacity ablations

We investigate how the model capacity of Midway Network’s components affects performance, namely the
midway path and forward dynamics model, shown in Table 5. For reference, Midway Network uses 4 layers
and embedding dimension of 192 for the midway path and 4 layers and embedding dimension of 384 for the
forward dynamics model. Reducing capacity of the midway path primarily harms optical flow performance.
On the other hand, adding capacity (2x midway dim) improves EPE and hurts mIoU, likely because the
motion latents can capture more information from the paired frames, but consequently, the forward prediction
objective is made easier with the increased motion latent size. Performance drops with fewer forward model
layers, indicating that having more model capacity for forward prediction is beneficial.

Table 5: Ablations studies on capacity of Midway Network’s midway path and forward dynamics model
evaluated on BDD100K semantic segmentation linear readout and MPI-Sintel optical flow finetuning.

Ablation | tmIoU |EPE
Full model 31.5 4.1
0.5x midway dim 31.3 6.7
2x midway dim 31.0 3.3
1-layer midway 31.9 6.9
2-layer midway 31.2 6.4
1-layer forward 29.6 5.0
2-layer forward 30.2 4.8

A.3 ADE20K linear readout

Table 6 shows evaluation results for ADE20K semantic segmentation linear readout. Performance trends
follow the UperNet finetuning results in Table 2. Again, Midway Network is competitive with baselines,
PooDLe and DoRA, and furthermore, it does not rely on an external supervised optical flow network and can
jointly learn representations for motion understanding.

A.4 Optical flow frozen readout

Table 7 provides evaluation results for optical flow linear readout. Here, the backbone parameters of each
method are frozen and only the DPT (Ranftl et al., 2021) head is trained using the same data as the optical
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Table 6: ADE20K semantic segmentation linear readout evaluations for WT-Venice 224 x 224 resolution
pretraining. TPooDLe on 512 x 1024 resolution pretraining from their original table (Wang et al., 2025).

Method Arch Ep. ‘ tmIoU fAcc
PooDLe! (Wang et al., 2025) R50 20 14.6  59.0
MAE (He et al., 2022) ViT-S 100 7.4 55.1
VideoMAE (Tong et al., 2022) ViT-S 100 0.8 28.6
DINO (Caron et al., 2021) ViT-S 100 6.9 48.2
CroCo v2 (Weinzaepfel et al., 2022) ViT-S 100 4.2 48.7
DoRA (Venkataramanan et al., 2024)  ViT-S 100 14.1 63.5
Midway ViT-S 100 12.1 61.3

flow finetuning experiments. Midway Network’s learned representations again achieve strong performance
relative to the baselines.

Table 7: Optical flow frozen readout evaluations for BDD100K 224 x 224 resolution pretraining.

FlyingThings MPI-Sintel

Method Arch  Ep- | \ppp'() |EPE (f) JEPE (c) LEPE (f)

iBOT (Zhou et al., 2021) ViT-S 800 20.5 20.3 13.9 14.6
DINO (Caron et al., 2021) ViT-S 300 19.0 17.5 14.0 13.5
VideoMAE (Tong et al., 2022) ViT-S 300 20.0 20.0 11.6 12.2
CroCo v2 (Weinzaepfel et al., 2023) ViT-S 300 39.2 39.2 24.0 23.9
DoRA (Venkataramanan et al., 2024)  ViT-S 300 20.7 20.6 12.6 13.3
Midway (enc. only) ViT-S 300 18.8 17.0 12.5 11.7
Midway ViT-S 300 20.2 19.3 12.8 12.6
DINO (Caron et al., 2021) ViT-B 300 19.0 17.4 14.2 13.2
CroCo v2 (Weinzaepfel et al., 2023) ViT-B 300 39.2 39.2 24.0 24.1
Midway ViT-B 300 21.7 20.2 13.7 12.9

B Implementation details

In this section, we provide additional details on the implementation of Midway Network, the pretraining and
evaluation setups, and compute resources used for our experiments. The experiments were implemented using
the PyTorch framework.

B.1 Architecture

The ViT encoders have 12 feature levels, and we perform the dense forward prediction objective at levels 3, 6,
and 9. The midway path infers motion latents with feature inputs at level 12 for the level 9 objective and
refines them as described in Section 2 for levels 6 and 3. The midway inverse dynamics model at each level is
a 4-block transformer with feature dimension of 192, with linear projectors to map from and to the original
feature dimension. We use 10 learnable tokens for the motion latents. The backward layers are 1-block
cross-attention transformers with feature dimension equal to the dimension of the underlying ViT encoder,
i.e. 384 for ViT-S and 768 for ViT-B. The forward dynamics model at each level is a 4-block transformer
with feature dimension equal to the underlying encoder dimension as well. The learnable gating units are
placed at all but the first block. Each gating unit is a multi-layer perceptron with 1 hidden layer of same
dimension as the encoder, GELU activation, and a final sigmoid activation. To bias the initial gating weights
towards 1, i.e. the original fully-weighted residual connection, we add a bias of 4 to the input of the sigmoid.

We follow DINO (Caron et al., 2021) for implementation of the joint-embedding invariance objective, using
the same projection heads, centering and sharpening operations, and temperature schedules as described in
their paper. Given that we have 2 paired video frames as input, we can sample 2 global crops and 8 local
crops from each frame and compute the loss between crops across frames to leverage the natural temporal
motion augmentation. The loss is also symmetrical, where we compute the loss for the original frame ordering
as well as the reversed ordering. We utilize this setup for the DINO baseline as well for fair comparison. The
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final loss is an equal-weighted sum of the dense forward prediction loss, averaged over the feature levels, and
the joint-embedding invariance loss:

L
1 !
L= 7 l; LYy + Lino. (3)

B.2 Pretraining

We outline the hyperparameters used for pretraining in Table 8. The hyperparameters largely follow the
DINO (Caron et al., 2021) training recipe. We use the same hyperparameters for BDD100K and Walking
Tours pretraining. For BDD100K, we utilize repeat sampling following MAE-st (Feichtenhofer et al.,; 2022),
which samples R = 5 frames each time a video is seen for faster data loading. Therefore, we treat each pass
through the dataset as R epochs.

Table 8: Hyperparameters used for full Midway Network experiments.

Hyperparameter Value

Learning rate 5x107*
Learning rate warmup 10 epochs
Learning rate schedule cosine

Batch size 200
Weight decay 0.04
Weight decay end 0.4
Optimizer AdamW
Betas (0.9, 0.999)
Gradient clip norm 3.0

Drop path rate 0.1

Use FP16 Yes

B.3 Baselines

We use the official implementations to pretrain the baselines on BDD100K and Walking Tours. We use the
released checkpoints for DINO, DoRA, and PooDLe on Walking Tours; semantic segmentation finetuning
results for MAE, DINO, DoRA, and PooDLe are also from the original table in PooDLe (Wang et al., 2025).

B.4 Evaluation

For the semantic segmentation tasks, we follow the ViT-based setup described in PooDLe (Wang et al., 2025),
based on the mmsegmentation (Contributors, 2020) codebase. The linear and UperNet readout setups for
BDD100K and CityScapes were originally from FlowE (Xiong et al., 2021); the UperNet finetuning setup for
ADE20K was originally from iBOT (Zhou et al., 2021).

For the optical flow tasks, we follow the finetuning evaluation setup described in CroCo v2 (Weinzaepfel
et al., 2023) and use their official implementation. Our main results follow CroCo v2’s setup for Table 1 from
their paper; our ablation studies follow their setup for their Table 11 (“smaller training data”) to match the
settings of other optical low methods. The primary difference is that we replace CroCo v2’s decoder with
Midway Network’s midway inverse dynamics and forward dynamics models. We use the following as input to
the DPT (Ranftl et al., 2021) that outputs the optical flow predictions: dense tokens of encoder feature level
12, dense spatial tokens corresponding to the target frame processed by the midway model at the highest
level of the dense objective, dense token prediction of the forward model at the highest objective level, and
dense token prediction of the forward model at the lowest objective level. For reference, the midway model
processes the dense spatial tokens from the source and target frames alongside the motion latents. We use
this architecture for all other baselines besides CroCo v2 with randomly initialized weights, as they do not
have binocular components.
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B.5 Compute and training costs

Table 9 provides a comparison on training cost in FLOPs per single training example and model size in
parameters for Midway Network and the baseline methods. Midway Network uses less than half of the FLOPs
of prior video data-based learning methods, PooDLe and DoRA. The dynamics networks of Midway Network
use more parameters to capture motion information, but avoid costly iterative refinement operations used by
prior flow methods such as RAFT (Teed and Deng, 2020) and FlowFormer (Huang et al., 2022). Table 10
shows the compute resources used for the experiments.

Table 9: Training cost (GLOPs per example) and model size (millions of parameters) of Midway Network
and baseline methods.

Method Training cost (GFLOPs) Parameters (millions)

Midway Network 90.8 21.7 (encoder), 36.6 (dynamics networks)
PooDLe 202.3 23.5 (encoder), 12.1 (spatial decoder)
DoRA 202.1 21.7 (encoder)

CroCo v2 6.9 21.7 (encoder), 7.2 (decoder)

DynaMo 68.9 21.7 (encoder), 13.0 (dynamics networks)
VideoMAE 11.6 22.0 (encoder), 2.0 (decoder)

iBOT 35.3 21.7 (encoder)

DINO 50.4 21.7 (encoder)

Table 10: Compute resources and time used for Midway Network experiments.

Experiment Epochs Resources Time

BDD100K ViT-S pretraining 300 2 A100 GPUs 66 hours
BDD100K ViT-B pretraining 300 8 RTX A6000 GPUs 27 hours
BDD100K ViT-S ablations 100 2 A100 GPUs 24 hours
Walking Tours ViT-S pretraining 100 4 RTX A6000 GPUs 29 hours

C DMore visualizations

We show additional visualizations of predictions from the semantic segmentation evaluations in Figure 8
for CityScapes, Figure 8 for WT-Sem, and Figure 10 for ADE20K, and optical flow evaluations for models
pretrained on Walking Tours in Figure 11.

Ground Truth Midway Network PooDLe

DINO CroCo v2 DoRA DynaMo

Figure 8: Visualization of CityScapes semantic segmentation UperNet readout. Midway Network generates
cleaner boundaries, particularly for the crossing pedestrians.
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PooDLe

DINO CroCov2 DoRA MAE

Figure 9: Visualization of WT-Sem semantic segmentation UperNet finetuning. Midway Network is able to
produce reasonable segmentation masks, even in cluttered scenes.

Ground Truth Midway Network CroCov2

-

&

Image Ground Truth Midway Network CroCov2

Figure 10: Visualization of ADE20K semantic segmentation UperNet finetuning. Midway Network generates
more accurate segmentation masks compared to CroCo v2.

We also include more examples of the forwarded feature perturbation analysis of Midway Network’s
learned dynamics, with heatmaps in Figure 12 and high-level tracking in Figure 13.
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Source Target Ground Truth Midway Network CroCov2 DINO

Figure 11: Visualization of FlyingThings and MPI-Sintel optical flow evaluations after finetuning for models
pretrained on WT-Venice. Midway Network is able to generate more accurate optical flow predictions
compared to CroCo v2 and DINO.

Source Target Heatmap Source Target Heatmap

Figure 12: Heatmaps for forwarded feature perturbation in Source (green squares); shown in Target at the
same location to highlight motion. The learned dynamics can capture high-level correspondence, such as the
right taillight of the black car (bottom left).
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Midway forward
perturbation

DINO-INTK
feature similarity

Midway forward
perturbation

DINO-IN1K
feature similarity

Figure 13: High-level tracking using forwarded feature perturbation and/or feature similarity. Midway
Network is able to track high-level regions through motion transformations, such as the back of the toddler
(top row, pink square).
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