
Context Tuning for In-Context Optimization

Jack Lu, Ryan Teehan, Zhenbang Yang, and Mengye Ren
New York University

{yl11330, rst306, zy3101, mengye}@nyu.edu
https://agenticlearning.ai/context-tuning/

Abstract

We introduce Context Tuning, a simple and effective method to significantly enhance few-shot adapta-
tion of language models (LLMs) without fine-tuning model parameters. While prompt-based adaptation
techniques have demonstrated the effectiveness of lightweight adaptation methods for large language
models (LLMs), they typically initialize a trainable prompt or prefix with irrelevant tokens for the task
at hand. In contrast, Context Tuning initializes the trainable prompt or prefix with task-specific demon-
stration examples, leveraging the model’s inherent In-Context Learning (ICL) ability to extract relevant
information for improved few-shot learning performance. Extensive evaluations on benchmarks such as
CrossFit, UnifiedQA, MMLU, BIG-Bench Hard, and ARC demonstrate that Context Tuning outperforms
traditional prompt-based adaptation methods and achieves competitive accuracy to Test-Time Training
with significantly higher training efficiency.

1 Introduction

Large language models (LLMs) have demonstrated impressive capabilities across a wide range of natural
language processing (NLP) tasks by leveraging knowledge acquired during large-scale pretraining (Brown
et al., 2020; Grattafiori et al., 2024; Jiang et al., 2023). These models can adapt to new tasks using only a
few input and output examples provided in context, a process known as In-Context Learning (ICL) (Brown
et al., 2020). However, ICL often struggles with complex reasoning or domain shifts, as it relies solely on
a forward pass to interpret the examples. While methods like Test-Time Training (TTT) (Akyürek et al.,
2024) have shown that effective adaptation is possible with limited data, they can still be computationally
expensive. This highlights the need for more efficient and effective approaches to task adaptation in LLMs.

Contrary to ICL’s reliance on a forward pass, prompt-based adaptation methods like Prompt Tun-
ing (Lester et al., 2021) and Prefix Tuning (Li and Liang, 2021) prepend a set of trainable vectors to each
example input and optimize them via gradient descent. At a conceptual level, ICL harnesses the model’s
ability to extract task-relevant information from the context of few-shot examples, while prompt-based
adaptation methods optimize randomly initialized vectors to guide the model’s behavior in solving each ex-
ample. Given these complementary approaches, it is natural to ask whether we can bridge them by directly
optimizing the context of few-shot examples to steer the model more effectively.

In this work, we introduce Context Tuning, a simple and effective method for few-shot learning that initial-
izes trainable vectors from the few-shot examples of a novel task, then optimizes them to solve each example.
We develop two variants: CT-Prompt, which applies Prompt Tuning to a soft prompt initialized from few-
shot examples, and CT-KV, which applies Prefix Tuning to optimize the key-value (KV) cache derived from
those same examples. While CT-Prompt achieves strong performance, it suffers from a quadratic training-
time cost in the number of examples. Similarly, the recently proposed Test-Time Training (TTT) (Akyürek
et al., 2024) method, which fine-tunes model parameters with LoRA (Hu et al., 2022) on permutations of few-
shot examples, also incurs quadratic cost. In contrast, CT-KV achieves linear training time complexity while
also outperforming CT-Prompt and achieving competitive performance to TTT, thanks to the efficiency and
per-layer conditioning of the KV cache. In addition, because Context Tuning tunes the context and TTT
tunes the model, the two methods are complementary: applying CT-KV to refine the model context after
TTT’s weight updates leads to additional performance gains. A high-level comparison in Figure 1 illustrates
CT-KV’s high efficiency and accuracy, whether used alone or in combination with TTT.

1

https://agenticlearning.ai/context-tuning/

0 50 100 150 200 250 300 350
Training Time per Task from NLP-LR (seconds)

36

38

40

42

44

46

Ac
cu

ra
cy

 (%
)

Zero-shot
In-Context Learning

Prompt-Tuning
Prefix-Tuning

Test-Time Training
CT-Prompt

CT-KV
Test-Time Training + CT-KV

Figure 1: Comparison of training-free, prompt-based
adaptation, and In-Context Optimization methods on
solving 26 NLP-LR tasks from Table 1. Circles are
baselines; stars are our methods; bolded methods
attain the best performance-efficiency tradeoff.

We situate these two approaches for few-shot
learning with in-context examples – TTT that op-
timizes the model itself, and Context Tuning that
optimizes the model’s context – within a broader
framework we term In-Context Optimization (ICO).
Under this framework, adaptation leverages the
LLM’s ICL ability and either updates its parame-
ters or its context representation. We evaluate ICL,
prompt-based adaptation methods, and ICO tech-
niques across a wide range of natural language and
symbolic reasoning benchmarks, including Cross-
Fit (Ye et al., 2021), UnifiedQA (Khashabi et al.,
2020), BIG-Bench Hard (BBH) (Srivastava et al.,
2023; Suzgun et al., 2022), MMLU (Hendrycks et al.,
2021), and the Abstraction and Reasoning Cor-
pus (ARC) (Chollet, 2019b). CT-KV significantly
outperforms both ICL and prompt-based adapta-
tion methods, while remaining competitive with
the more computationally intensive TTT approach.
Furthermore, we show that CT-KV can serve as a post-hoc refinement step following TTT, leading to
improved few-shot adaptation performance compared to either method used in isolation.

2 Related Work

Prompt-Based Adaptation. Prompt-Based Adaptation steers pretrained language models to solve down-
stream tasks by learning task-specific inputs while keeping the model weights frozen. AutoPrompt (Shin
et al., 2020) was an early method that constructed discrete prompts via gradient-based search. Prefix
Tuning (Li and Liang, 2021) introduced trainable continuous vectors that serve as a prefix to the model’s
key-value cache at each layer, achieving strong performance on generation tasks with only a small number
of trainable parameters. P-Tuning (Liu et al., 2022b) appended soft prompts to the input and used an
LSTM-based prompt encoder to model dependencies between prompt tokens. Prompt Tuning (Lester et al.,
2021) simplified the approach by learning soft prompts solely at the input layer and demonstrated that
performance improves with model scale. P-Tuning v2 (Liu et al., 2022a) provided an optimized implementa-
tion of Prefix Tuning and extended it to natural language understanding tasks. While these works typically
initialize their learnable prompts using high-level task instructions, random tokens, or unrelated words, Con-
text Tuning leverages the pretrained LLM’s ability to extract meaningful task-specific information directly
from in-context demonstration pairs. Finally, Singhal et al. (2023) proposed Instruction Prompt Tuning, in
which expert-curated few-shot demonstrations are prepended to a learned soft prompt. In contrast, Context
Tuning draws demonstration pairs directly from the dataset and uses them to initialize the prompt rather
than prepending them as input.

In-Context Learning. Introduced by Radford et al. (2019), ICL has become a defining feature of large
language models (LLMs), enabling them to perform novel tasks by conditioning on a few input-output
demonstrations without any parameter updates. This behavior has been leveraged through various prompt-
ing strategies, such as Chain-of-Thought prompting to elicit reasoning (Wei et al., 2022) and self-consistency
decoding to reduce variance (Wang et al., 2023). Prior work has also explored selecting informative demon-
strations (Liu et al., 2021; Li and Qiu, 2023), as well as meta-training over large sets of tasks to improve
ICL generalization and inference-time efficiency (Min et al., 2022a; Chen et al., 2022; Muhtar et al., 2024).
From a theoretical perspective, Dai et al. (2023) and Deutch et al. (2024) interpret ICL as performing im-
plicit gradient descent; Zhao (2023) conceptualizes it as contextual retrieval within an associative memory
framework; and Garg et al. (2022) demonstrates that transformers trained from scratch can learn complex
function classes in-context. While these findings highlight ICL’s potential, recent studies Min et al. (2022b)
and Jang et al. (2024) show that LLMs often only rely on superficial patterns in the demonstrations rather

2

than learning the underlying task. Our work further investigates these limitations by analyzing the inter-
mediate key-value (KV) cache extracted from demonstration pairs in Section 5.7, showing that it fails to
encode sufficient task information and addresses this shortcoming through gradient optimization.

Inference-Time Optimization. Our framework, In-Context Optimization, contributes to a broader class
of methods that adapt models or their internal representations at inference time. Originally applied to object
recognition (Sun et al., 2020; Gandelsman et al., 2022), test-time training has since shown strong results in
language modeling (Hardt and Sun, 2024), video generation (Dalal et al., 2025), controllable language genera-
tion (Liu et al., 2024b), and abstract reasoning (Bonnet and Macfarlane, 2024). In diffusion models (Ho et al.,
2020; Rombach et al., 2022), techniques such as classifier guidance and classifier-free guidance (Dhariwal and
Nichol, 2021; Ho, 2022) steer generation by optimizing intermediate outputs during sampling. These methods
have enabled controllable text-to-image synthesis (Nichol et al., 2022), adjustable aesthetic attributes (Wal-
lace et al., 2023), and improved sample diversity (Lu et al., 2024). More recently, Akyürek et al. (2024)
proposed test-time training of LoRA (Hu et al., 2022) parameters for ICL using a leave-one-out strategy,
achieving state-of-the-art performance on the Abstraction and Reasoning Corpus (ARC) (Chollet, 2019b,a).
In contrast, Context Tuning tunes a soft prompt or continuous prefix rather than updating model weights,
and we evaluate it on a broader range of ICL tasks.

3 Background

We introduce the mathematical formulation of ICL, Prefix Tuning, and Prompt Tuning. To set up the
problem of single-task few-shot adaptation, we consider a language model pϕ with parameters ϕ, d hidden
dimensions, L layers, a demonstration set

D = {(xi, yi)}ki=1,

and the goal of solving a new query xq from the same task. We denote the concatenated context of all
demonstration pairs as C = [x1; y1; . . . ;xk; yk].

In-Context Learning. ICL concatenates all k demonstration pairs followed by the query xq. The model
then predicts ŷq conditioned on this context:

ŷq = argmax
y

pϕ
(
y
∣∣ [C;xq]

)
.

In ICL, there is no gradient-based optimization; instead, the model adapts by attending to the tokens of the
demonstration pairs provided in context.

Prompt Tuning. In Prompt Tuning, the model parameters ϕ remain fixed. Instead, m trainable soft
prompt tokens P are prepended to each input and optimized via gradient descent:

P ∗ = argmin
P

k∑
i=1

− log pϕ
(
yi

∣∣ [P ;xi]
)
. (1)

After optimizing on the demonstration pairs, the optimized soft prompt P ∗ can be used for inference:

ŷq = argmax
y

pϕ
(
y
∣∣ [P ∗;xq]

)
.

Prefix Tuning. Prefix Tuning also keeps ϕ fixed but learns layer-wise prefixes of m trainable vectors for
the keys and values in each transformer layer:

Θ = {Kj , Vj}Lj=1.

3

LLM

Context Tuning (CT-KV) ෝ𝑦𝑖

𝑥1, y1

𝐾1𝑉1

𝐾1𝑉1

𝐾1𝑉1

𝐾2𝑉2

𝐾2𝑉2

𝐾2𝑉2

𝐾𝑖𝑉𝑖

𝐾𝑖𝑉𝑖

𝐾𝑖𝑉𝑖

𝐾𝑘𝑉𝑘

𝐾𝑘𝑉𝑘

𝐾𝑘𝑉𝑘 𝑄𝐾𝑉

𝑄𝐾𝑉

𝑄𝐾𝑉

LLM

Generation ෞ𝑦𝑞

𝐾1𝑉1∗

𝐾1𝑉1∗

𝐾1𝑉1∗

𝐾2𝑉2∗

𝐾2𝑉2∗

𝐾2𝑉2∗

𝐾𝑖𝑉𝑖∗

𝐾𝑖𝑉𝑖∗

𝐾𝑖𝑉𝑖∗

𝐾𝑘𝑉𝑘∗

𝐾𝑘𝑉𝑘∗

𝐾𝑘𝑉𝑘∗ 𝑄𝐾𝑉

𝑄𝐾𝑉

𝑄𝐾𝑉

𝑥𝑖𝑥𝑘, 𝑦𝑘𝑥𝑖, 𝑦𝑖𝑥2, 𝑦2𝑥1, 𝑦1

Attention Prediction

𝑥𝑞

Leave-One-Out
Masking

Figure 2: CT-KV, the variant of Context Tuning that optimizes the key-value prefixes derived from
in-context demonstration pairs. CT-KV (left) first initializes a prefix {Ki, Vi}ki=1 from demonstration pairs
{(xi, yi)}ki=1, then trains it to solve each pair. To prevent the model from simply retrieving the demonstration
pair from the prefix, Leave-One-Out Masking prevents the model from attending to Ki, Vi when solving pair
i. At generation time (right), the model conditions on all optimized prefixes {K∗

i , V
∗
i }ki=1 to solve query xq.

Each layer’s attention uses these prefixes by prepending Kj to its keys and Vj to its values. The prefixes are
optimized to minimize

Θ∗ = argmin
Θ

k∑
i=1

− log pϕ
(
yi

∣∣ [Θ;xi]
)
. (2)

After obtaining Θ∗, inference on the query xq proceeds analogously to Prompt Tuning.

4 Context Tuning for In-Context Optimization

In this section, we introduce the mathematical formulation of In-Context Optimization (ICO), a few-
shot adaptation scheme that uses demonstrations in the context and performs gradient-based optimiza-
tion on either the model parameters or a context representation. We then show that Test-Time Training
(TTT) (Akyürek et al., 2024) is an instance of ICO. Finally, we present Context Tuning, formalizing its CT-
Prompt and CT-KV variants along with the two additional design choices that drive their strong performance.

4.1 In-Context Optimization

To combine the strengths of supervised fine-tuning and LLMs’ inherent ability to learn from context, ICO
unifies two prevalent techniques for few-shot learning: ICL and gradient-based optimization. Formally, the
objective of ICO to minimize the loss

k∑
i=1

− log pϕ

(
yi

∣∣ [θ(i)context ;xi]
)
, (3)

where θ
(i)
context is a context representation derived from the set of demonstration pairs D = {(xi, yi)}ki=1. One

may notice that this objective resembles Equations 1 and 2 because traditional prompt-based adaptation
methods also prepend additional contexts to inputs during optimization. Still, these contexts are randomly
initialized instead of utilizing the demonstration pairs D. Therefore, Prompt Tuning and Prefix Tuning are
not instances of ICO by definition. Furthermore, since ICL does not perform gradient-based optimization
at all, it also does not fall under ICO.

4

4.2 Test-Time Training as ICO

TTT (Akyürek et al., 2024) can be viewed as an instance of ICO. Specifically, TTT minimizes Equation 3
by first initializing the model weights ϕ from a pretrained model, then updating them with LoRA layers for
parameter efficiency. At each optimization iteration, TTT dynamically sets

θ
(i)
context = C−i,

where C−i represents the concatenated tokens of a random permutation of demonstration pairs except for
the i-th pair. Therefore, the optimization equation becomes:

ϕ∗ = argmin
ϕ

k∑
i=1

− log pϕ
(
yi

∣∣ [C−i ;xi]
)
.

To perform inference on the query input xq, TTT uses the optimized model weights and the concatenation
of all demonstration pairs as context:

ŷq = argmax
y

pϕ∗
(
y
∣∣ [C ;xq]

)
.

4.3 Context Tuning

We design our Context Tuning approach to be an instantiation of the ICO framework. In contrast to TTT,
Context Tuning freezes model parameters ϕ and instead directly optimizes the lightweight context represen-
tation θcontext of the demonstration pairs.

• CT-Prompt initializes θcontext = PCT as the model’s prompt embeddings on C, the concatenation of
demonstration pairs.

• CT-KV initializes θcontext = ΘCT as a key-value prefix ΘCT = {Kj , Vj}Lj=1 obtained from the model’s
layer-wise activations on C.

Furthermore, we introduce two design choices for both CT-Prompt and CT-KV. We study the performance
impact of each in Section 5.5, demonstrating that both are crucial for achieving strong empirical gains.

Leave-One-Out Masking. To prevent the model from simply retrieving the answer yi of the ith demon-
stration pair embedded in θcontext when predicting the output for xi, we construct

θ
(i)
context =

{
P−i
CT for CT-Prompt,

Θ−i
CT for CT-KV,

and use it instead of θcontext in optimization. When conditioning on P−i
CT or Θ−i

CT, the trainable soft prompt
tokens in CT-Prompt or prefix tokens in CT-KV corresponding to the in-context demonstration pair (xi, yi)
are masked out from the attention view of the model. In contrast to TTT’s leave-one-out technique, which
omits one demonstration pair in the context to update the model weights, our Leave-One-Out Masking
operates on the derived context vectors with the model parameters frozen, ensuring that the optimization
refines the context representation itself rather than relying on weight updates.

Token Dropout. Since Context Tuning generally introduces a larger number of prompt or prefix tokens
than traditional prompt-based adaptation techniques, we regularize training by randomly dropping tokens

in θ
(i)
context with a fixed probability, denoted as TokenDrop. During optimization, the loss is computed in the

expectation over these stochastic dropout masks, encouraging the learned context to avoid overfitting to any
single token.

5

Altogether, we arrive at the optimization equations for CT-Prompt and CT-KV:

CT-Prompt: P ∗
CT = argmin

PCT

k∑
i=1

− log pϕ
(
yi

∣∣ [TokenDrop
(
P−i
CT

)
;xi]

)
,

CT-KV: Θ∗
CT = argmin

ΘCT

k∑
i=1

− log pϕ
(
yi

∣∣ [TokenDrop
(
Θ−i

CT

)
;xi]

)
.

To perform inference on the query xq, CT-Prompt and CT-KV use their respective optimized contexts:

CT-Prompt: ŷq = argmax
y

pϕ
(
y
∣∣ [P ∗

CT ;xq]
)
,

CT-KV: ŷq = argmax
y

pϕ
(
y
∣∣ [Θ∗

CT ;xq]
)
.

In practice, CT-Prompt requires recomputing layer-wise keys and values corresponding to PCT, while
CT-KV does not for ΘCT. In the Appendix, we formally prove that for each optimization step, CT-KV has
lower time complexity than both TTT and CT-Prompt with respect to the number of demonstration pairs.
Finally, we introduce TTT+CT-KV, which first performs TTT to update model weights ϕ, then applies
CT-KV to refine the model’s demonstration context for improved performance.

5 Experiments

5.1 Datasets

We evaluate on a diverse set of challenging datasets for pretrained LLMs. We show a representative task
example for each dataset in Figure 3.

• NLP-LR is the low-resource dataset split introduced by Min et al. (2022a), encompassing over 26
NLP tasks from CrossFit (Ye et al., 2021) and UnifiedQA (Khashabi et al., 2020), such as sentiment
analysis and paraphrasing. Following Min et al. (2022a), we sample k = 16 demonstration pairs per
task and evaluate task instances as multiple-choice problems.

• Massive Multitask Language Understanding (MMLU) is a diverse benchmark consisting of 57
subject-specific tasks, including mathematics, history, law, and various other domains (Hendrycks et al.,
2021). We sample k = 16 demonstration pairs per task and evaluate task instances as multiple-choice
problems.

• BIG-Bench Hard (BBH) is a curated subset of BIG-Bench, consisting of 27 tasks across 23 task types
that challenge pretrained LLMs with questions involving algorithmic puzzles, symbolic manipulation,
and other complex reasoning domains (Srivastava et al., 2023; Suzgun et al., 2022). Following Akyürek
et al. (2024), we sample k = 10 demonstration pairs per task and prepend trainable instructions to all
of our methods. We evaluate these tasks as question-answering problems.

• Abstraction and Reasoning Corpus (ARC) is a challenging symbolic reasoning benchmark with
400 evaluation tasks, each defined by a few grid transformation pairs and one or more query input
grids (Chollet, 2019b). Since the average number of available demonstration pairs is fewer than 4, we
use all of them in context. Tasks are evaluated as question-answering problems.

Each dataset is formatted either as a multiple-choice task or a question-answering task. For multiple-
choice problems, where the LLM must select an output from a predefined set of answers, we follow Min et al.
(2022a) and choose the option with the lowest loss. For question-answering tasks, the LLM has to generate
an answer that matches the ground-truth output.

6

BBH
Instruction: A logical deduction task which requires deducing the order of a sequence of objects. Answer with only the corresponding

 letter (e.g. (A)).

Query: The following paragraphs each describe a set of three objects arranged in a fixed order. The statements are logically consistent

 within each paragraph. In a golf tournament, there were three golfers: Ada, Mel, and Mya. Mya finished below Ada. Mel finished

 above Ada.

 Options:

 (A) Ada finished last

 (B) Mel finished last

 (C) Mya finished last

Answer: (C)

Query

Answer

ARCNLP-LR
Query: What would you measure in a graduated

 cylinder?

Options: nitrogen, Perfume, Oxygen, helium

Answer: Perfume

MMLU
Query: Find the degree for the given field

 extension Q(sqrt(2) + sqrt(3)) over Q.

Options: 0, 4, 2, 6

Answer: 4

Test(1) (2) (3)

Figure 3: One test pair from BBH, NLP-LR, and MMLU each, and 3 demonstration pairs followed by
a test pair from ARC. BBH contains instructions that we prepend to model inputs. NLP-LR and MMLU
contain multiple-choice options for the model to select. To avoid clutter, we show demonstration pairs from
BBH, NLP-LR, and MMLU in the Appendix.

5.2 Models

Following Min et al. (2022a) and Akyürek et al. (2024), we use GPT-2 and Llama3-8B for NLP-LR and
BBH, respectively. To demonstrate that Context Tuning performs well across different model sizes, we select
Llama3.2-3B for MMLU. Due to computational constraints, we use Llama3.2-1B for ARC, which requires
handling long input sequences. Since the pretrained Llama3.2-1B model cannot solve any of the 400 ARC
evaluation tasks, we follow Akyürek et al. (2024) and Franzen et al. (2024) by fine-tuning it on the ARC train-
ing split, which contains 400 tasks that do not overlap with the evaluation split. While the works of Franzen
et al. (2024) and Akyürek et al. (2024) focus on achieving high scores in the ARC competition (Chollet et al.,
2025), our goal is to develop a method applicable across general few-shot problems. Therefore, we do not
perform augmentation or voting for ARC. All pretrained model checkpoints were obtained from HuggingFace.

5.3 Experiment Setup

On top of zero-shot inference and ICL, we compare a variety of few-shot learning techniques to conduct a
broad investigation of prompt-based adaptation strategies and methods under the In-Context Optimization
framework: Prompt Tuning, Prefix Tuning, TTT, CT-Prompt, CT-KV, and TTT+CT-KV. We use greedy
decoding for all question-answering tasks. All experiments in Table 1 are run over 5 different sets of randomly
selected demonstration pairs, except for ARC, which has a fixed set of demonstration pairs for each task.

For Prompt Tuning and Prefix Tuning, we either set the number of trainable tokens m to 32, or match it
to the number of tokens that are in the demonstration pairs used by Context Tuning. Trainable soft prompts
and prefixes are initialized using sampled token embeddings from the model, which we find yields the best
baseline performance.

For ARC, we fine-tune our Llama3.2-1B checkpoint following the setup of Franzen et al. (2024), using 2
A100 GPUs for 24 epochs with a learning rate of 2× 10−4, cosine learning rate scheduler, 1 warmup epoch,
and a global batch size of 32 (after gradient accumulation). All other experiments are conducted on a single

7

Method NLP-LR MMLU BBH ARC

Acc. (%) T (s) Acc. (%) T (s) Acc. (%) T (s) Acc. (%) T (s)

Baselines
Zero-Shot 34.9± 0.62 0 35.8± 0.71 0 40.9± 0.43 0 1.0 0
ICL 35.6± 0.65 0 41.2± 0.57 0 50.4± 0.78 0 13.3 0
Prompt Tuning (m=32) 41.4± 1.02 147 39.2± 1.04 15 50.8± 1.59 7 12.0 13
Prompt Tuning (m=# demo) 38.8± 1.23 231 37.3± 1.23 29 47.5± 1.84 16 14.5 49
Prefix Tuning (m=32) 42.0± 0.85 123 39.9± 0.94 5 52.7± 1.12 7 9.3 14
Prefix Tuning (m=# demo) 41.1± 0.89 144 38.8± 0.81 8 52.8± 1.15 9 20.5 24
TTT 44.1± 0.65 342 43.6± 0.55 30 57.8± 1.13 14 23.8 56

Our Methods
CT-Prompt 43.2± 0.61 228 43.6± 0.67 33 56.3± 0.98 14 22.5 52
CT-KV 44.2± 0.55 145 43.7± 0.54 9 57.9± 0.78 7 23.8 26
TTT+CT-KV 47.6± 0.53 372 44.1± 0.38 34 58.2± 0.73 17 25.8 63

Table 1: Few-shot learning performance on NLP-LR, MMLU, BBH, and ARC benchmarks. Each cell
contains the accuracy (%) and training time per task (seconds), delimited by /. We show the means and
standard deviations of accuracies over 5 seeds with different sets of demonstration pairs per task (except
ARC because it has fixed demonstration pairs). The best accuracy is bolded and second best is underlined
for each benchmark.

A100 GPU, except NLP-LR, which is run on an RTX8000. For CT-Prompt and CT-KV, we apply Leave-
One-Out Masking from Section 4 across all datasets, except ARC, where performance improves without it.
We elaborate on this decision in Section 5.5.

For completeness, we also compare alternative setups for both Prompt Tuning and Prefix Tuning. In
the Appendix, we report results using uniformly initialized trainable parameters for both methods. We also
include results for Prefix Tuning with an MLP parameterization, along with details of our hyperparameter
search to support reproducibility. Overall, our evaluation spans a wide range of challenging tasks, model
sizes from 1B to 8B parameters, varied numbers of demonstration pairs per task (k = 2 to k = 16), and
benchmarks with and without task instructions (e.g., BBH includes instructions, while the others do not).

5.4 Comparing Context Tuning to Baselines

Table 1 reports the performance and training time per task for our baselines and methods across the four
benchmarks. To fairly compare Prompt Tuning and Prefix Tuning with Context Tuning, “Prompt Tuning
(m=# demo)” and “Prefix Tuning (m=# demo)” are configured to match the number of trainable param-
eters in CT-Prompt and CT-KV, respectively, by setting m to the number demonstration pair tokens. We
report each method’s number of trainable parameters in the Appendix.

Context Tuning outperforms Prompt Tuning and Prefix Tuning. CT-Prompt outperforms Prompt
Tuning (m=32), and CT-KV outperforms Prefix Tuning (m=32), both by a wide margin across all bench-
marks. Moreover, increasing m to match the number of demonstration tokens does not yield consistent
improvements in Prompt Tuning or Prefix Tuning. Despite tuning the same number of parameters, these
variants still underperform compared to CT-Prompt and CT-KV. This highlights the effectiveness of lever-
aging the model’s ICL capabilities by initializing the prompt or prefix with demonstration tokens.

CT-KV is more efficient than CT-Prompt. CT-KV exhibits significantly lower training time per task
compared to CT-Prompt. This observation aligns with the time complexity discussion in the Appendix:
CT-Prompt incurs quadratic scaling in training time with the number of demonstration pairs, while CT-KV
scales linearly. In addition to being faster, CT-KV also outperforms CT-Prompt in accuracy by conditioning
each transformer layer’s activations with layer-specific key and value vectors, rather than relying solely on
input-level soft prompts.

8

CT-KV offers an efficient alternative to TTT, and the two are complementary. CT-KV achieves
performance comparable to TTT across NLP-LR, MMLU, and BBH, and solves the same number of ARC
tasks. However, it requires at most half the training time per task compared to TTT on all benchmarks.
This demonstrates that while the two methods converge to similar performance levels, CT-KV is more effi-
cient due to its linear time complexity to the number of demonstration pairs, in contrast to TTT’s quadratic
time complexity. Furthermore, CT-KV can be applied as a refinement step after TTT training of model
weights, leading to higher performance on all benchmarks with minimal additional training time. This sug-
gests that context and model-based adaptation methods within the In-Context Optimization framework are
complementary and can be effectively combined for few-shot learning.

Initialization from demonstration pairs lowers standard deviation in performance. Initializing
the trainable prompt or prefix from demonstration pairs, rather than from random tokens, reduces sensitiv-
ity to random seeds in both CT-Prompt and CT-KV. This leads to more stable performance compared to
Prompt Tuning and Prefix Tuning.

CT-KV outperforms MetaICL on NLP-LR. CT-KV achieves 44.2% accuracy on NLP-LR, surpass-
ing the reported 43.3% accuracy of MetaICL (Min et al., 2022a). This demonstrates that inference-time,
single-task optimization with CT-KV can rival the performance of approaches that fine-tune model weights
across many tasks.

5.5 Ablation Study

We perform ablations on our design choices for CT-KV, namely Leave-One-Out Masking and Token Dropout.
Table 2 shows that across all benchmarks, CT-KV without Token Dropout performs marginally worse than
CT-KV with both components. This suggests that when tuning more parameters than traditional Prefix
Tuning, applying dropout along the token dimension of Θ serves as an effective regularization technique
for improving generalization. For NLP-LR, BBH, and MMLU, CT-KV performs significantly worse when
Leave-One-Out Masking is not applied. This indicates that during training, it is crucial to mask out the
portion of θcontext corresponding to the demonstration pair being solved, as it prevents the model from
cheating by retrieving the target output directly from the prefix initialization. However, on ARC, the model
performs better without Leave-One-Out Masking. We hypothesize this is because ARC evaluation tasks
typically include very few demonstration pairs (fewer than 4), so masking out even one pair during training
can meaningfully reduce the effectiveness of the prompt or prefix in ICL. We also observe that when neither
Leave-One-Out Masking nor Token Dropout is applied, CT-KV performs worse than ICL on MMLU and only
marginally better on BBH, highlighting that these two design choices are essential to its overall performance.

Method NLP-LR MMLU BBH ARC

Neither 41.0± 0.75 40.2± 0.73 51.4± 0.76 21.0
No Leave-One-Out Masking 42.6± 0.45 41.5± 0.65 54.4± 0.88 23.8
No Token Dropout 43.9± 0.62 42.7± 0.62 55.3± 0.72 21.0
Both 44.2± 0.55 43.7± 0.54 57.9± 0.78 22.5

Table 2: Ablation study on the effects of Leave-One-Out Masking and Token Dropout in CT-KV. Means
and standard deviations are computed over 5 seeds.

5.6 Qualitative Analysis

We compare our CT-KV to ICL on the 400 ARC evaluation tasks. Table 3 shows the confusion matrix indi-
cating the number of tasks solved or not solved by each method. CT-KV recovers 51 tasks that ICL fails to
solve, demonstrating the benefit of tuning the key and value representations corresponding to the in-context
demonstration pairs. However, CT-KV fails to solve 9 tasks that ICL is able to, despite initializing its
trainable prefix with the same demonstration pairs, suggesting that it can overfit to the few-shot examples.

9

Query 1 Test QueryQuery 2

Answer 1 Answer 2 ICL Prediction CT-KV Prediction

Query 1

Answer 1 Answer 2 CT-KV Prediction ICL Prediction

Query 2 Query 3 Test Query

Answer 3

Figure 4: Left is an ARC task that CT-KV successfully solves, but ICL does not. Conversely, the task on
the right is solved by ICL but not by CT-KV.

ICL correct ICL wrong

CT-KV correct 44 51
CT-KV wrong 9 296

Table 3: Confusion matrix for the number of
solved/unsolved ARC tasks by ICL and CT-KV.

Figure 4 shows one failure case for each method,
where the other successfully solves the task. The
task on the left illustrates that CT-KV can effec-
tively adapt to the demonstration pairs to solve a
geometric puzzle involving cropping the upper-left
portion of objects in the query. On the right, we
show a case where CT-KV makes an incorrect pre-
diction. Since CT-KV performs optimization on the
3 demonstration pairs and two of them, illustrated on the right side of Figure 4, have answer grids that are
3-row by 4-column, we hypothesize that CT-KV became incorrectly biased toward predicting a grid of the
same shape during optimization.

5.7 Why does CT-KV Outperform ICL?

Two-Stage Interpretation of ICL. Table 1 shows that CT-KV significantly improves accuracy over ICL.
To understand ICL’s limitations, we frame it as a two-stage process: first, the model encodes task-relevant
information from the demonstration pairs into an intermediate key-value (KV) cache via a forward pass,
denoted as ΘCT and used by CT-KV to initialize θcontext); second, the model attends to this cache when
generating an output for a new query input xq.

Demonstration Pair Retrieval Experiment. Since the second stage does not revisit the original demon-
stration tokens, the KV cache must contain all necessary information to solve input-output pairs from the
task, including the demonstration pairs themselves. To assess how well this information is encoded, we
conduct a simple diagnostic: we concatenate all k demonstration pairs into the model’s context and then
prompt it with the input from one of those same pairs. In this setup, the correct answer is already present in
the context, so the model can either apply the task structure it has extracted from the other demonstration
pairs or retrieve the correct output directly from the context.

Table 4 shows that even in this favorable setting, performance surprisingly remains far from perfect,
suggesting that the KV cache often fails to encode the task adequately. CT-KV can be viewed as directly
optimizing this KV cache ΘCT by applying gradient updates on the demonstration pairs to refine the task
representation. To prevent overfitting through memorization, we additionally use a Leave-One-Out Masking
technique: when optimizing for a given demonstration pair, we exclude it from the context the model can
attend to, forcing the model to generalize from the remaining pairs.

NLP-LR MMLU BBH ARC

81.9± 0.32 84.1± 0.45 89.3± 0.43 22.6

Table 4: ICL accuracy on demonstration pairs with the same experiment setup as Section 5.3, but evaluating
on demonstration pairs instead of query pairs. Means and standard deviations are computed over 5 seeds.

10

This perspective highlights a key weakness of ICL: relying on a single forward pass to encode complex task
behavior often results in an incomplete or lossy task representation. In contrast, CT-KV uses gradient-based
optimization to iteratively refine the cache by explicitly training the model to solve each demonstration pair,
leading to a more effective and robust task encoding.

6 Conclusion

We introduce Context Tuning, a simple and effective method for improving few-shot learning in language
models by directly optimizing a prompt or prefix initialized from demonstration tokens. Our method com-
bines the strengths of ICL, which leverages pretrained knowledge by conditioning on task examples at infer-
ence time, and prompt-based adaptation, which efficiently adapts to new tasks by tuning a small number of
parameters. By initializing the tunable prompt or prefix derived from demonstration tokens, Context Tuning
enables the model to begin optimization from a task-aware starting point, leading to strong performance
without updating model weights.

We develop two versions of this approach: CT-Prompt, which tunes input-level soft prompts, and CT-KV,
which tunes layer-specific key and value prefixes derived from the model’s activations on demonstration pairs.
Across a broad set of benchmarks, both methods outperform ICL and traditional prompt-based tuning, with
CT-KV offering a more favorable trade-off between performance and efficiency. Through ablation studies,
we show that CT-KV’s performance depends critically on two design choices: Leave-One-Out Masking and
Token Dropout. To better understand the performance gap between ICL and CT-KV, we interpret ICL as
a two-stage process and find that it often encodes an incomplete representation of the task in its intermedi-
ate cache of demonstration pairs. CT-KV addresses this limitation by explicitly refining the cache through
optimization, resulting in a more accurate representation for steering the model toward solving query inputs.

More broadly, we frame our method within the In-Context Optimization framework, which encompasses
approaches that leverage in-context demonstration pairs to adapt either the model weights or its context at
inference time. This perspective connects CT-KV and Test-Time Training under a shared goal of improving
task adaptation through inference-time optimization. Our findings highlight that optimizing the lightweight
context, rather than the model, is a powerful and scalable direction for few-shot learning, achieving com-
petitive performance to TTT with significantly less training time. Moreover, we show that CT-KV can be
applied after TTT to further improve performance, suggesting that context and model adaptation can be
effectively combined.

Limitations and Future Work. Section 5.6 identifies a potential limitation of CT-KV, where it may
be prone to overfitting on certain tasks. Future directions to improve CT-KV include exploring stronger
regularization techniques beyond Token Dropout, or applying KV cache compression techniques (Devoto
et al., 2024; Ge et al., 2024; Liu et al., 2024a) to compress CT-KV’s initialization Θ before training, further
improving overall efficiency.

Acknowledgement

We thank members of the NYU Agentic Learning AI Lab for their helpful discussions. The work is supported
in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP) under
grant RS-2024-00469482, funded by the Ministry of Science and ICT (MSIT) of the Republic of Korea in
connection with the Global AI Frontier Lab International Collaborative Research. Jack Lu is supported
by the NSERC PGS-D Scholarship. The compute is supported by the NYU High Performance Computing
resources, services, and staff expertise.

References

Akyürek, E., Damani, M., Zweiger, A., Qiu, L., Guo, H., Pari, J., Kim, Y., and Andreas, J. (2024). The
surprising effectiveness of test-time training for few-shot learning. arXiv preprint arXiv:2411.07279.

Bonnet, C. and Macfarlane, M. V. (2024). Searching latent program spaces. arXiv preprint arXiv:2411.08706.

11

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models are
few-shot learners. In NeurIPS.

Chen, Y., Zhong, R., Zha, S., Karypis, G., and He, H. (2022). Meta-learning via language model in-context
tuning. In ACL.

Chollet, F. (2019a). Abstraction and reasoning corpus for artificial general intelligence (arc-agi).

Chollet, F. (2019b). On the measure of intelligence. arXiv preprint arXiv:1911.01547.

Chollet, F., Knoop, M., Kamradt, G., and Landers, B. (2025). Arc prize 2024: Technical report. arXiv
preprint arXiv:2412.04604.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and Wei, F. (2023). Why can gpt learn in-context?
language models implicitly perform gradient descent as meta-optimizers. In ICLR.

Dalal, K., Koceja, D., Hussein, G., Xu, J., Zhao, Y., Song, Y., Han, S., Cheung, K. C., Kautz, J., Guestrin,
C., Hashimoto, T., Koyejo, S., Choi, Y., Sun, Y., and Wang, X. (2025). One-minute video generation with
test-time training. In CVPR.

Deutch, G., Magar, N., Natan, T., and Dar, G. (2024). In-context learning and gradient descent revisited.
In NAACL.

Devoto, A., Zhao, Y., Scardapane, S., and Minervini, P. (2024). A simple and effective l 2 norm-based
strategy for kv cache compression. In EMNLP.

Dhariwal, P. and Nichol, A. Q. (2021). Diffusion models beat gans on image synthesis. In NeurIPS.

Franzen, D., Disselhoff, J., and Hartmann, D. (2024). The llm architect: Solving the arc challenge is a
matter of perspective. arXiv preprint arXiv:2505.07859.

Gandelsman, Y., Sun, Y., Chen, X., and Efros, A. A. (2022). Test-time training with masked autoencoders.
In NeurIPS.

Garg, S., Tsipras, D., Liang, P., and Valiant, G. (2022). What can transformers learn in-context? a case
study of simple function classes. arXiv preprint arXiv:2208.01066.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao, J. (2024). Model tells you what to discard: Adaptive
kv cache compression for llms. In ICML.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A.,
Schelten, A., Vaughan, A., Yang, A., Fan, A., Goyal, A., and et al. (2024). The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Hardt, M. and Sun, Y. (2024). Test-time training on nearest neighbors for large language models. In ICLR.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., and Steinhardt, J. (2021). Measuring
massive multitask language understanding. In ICLR.

Ho, J. (2022). Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. arXiv preprint
arxiv:2006.11239.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2022). LoRA:
Low-rank adaptation of large language models. In ICLR.

Jang, J., Jang, S., Kweon, W., Jeon, M., and Yu, H. (2024). Rectifying demonstration shortcut in in-context
learning. In ACL.

12

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., de las Casas, D., Bressand, F.,
Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-A., Stock, P., Scao, T. L., Lavril, T.,
Wang, T., Lacroix, T., and Sayed, W. E. (2023). Mistral 7b. arXiv preprint arXiv:2310.06825.

Khashabi, D., Min, S., Khot, T., Sabharwal, A., Tafjord, O., Clark, P., and Hajishirzi, H. (2020). UNI-
FIEDQA: Crossing format boundaries with a single QA system. In EMNLP (Findings).

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., and Hadsell, R. (2017).
Overcoming catastrophic forgetting in neural networks. In PNAS.

Lester, B., Al-Rfou, R., and Constant, N. (2021). The power of scale for parameter-efficient prompt tuning.
In EMNLP.

Li, X. and Qiu, X. (2023). Finding supporting examples for in-context learning. In EMNLP (Findings).

Li, X. L. and Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation. In ACL.

Liu, A., Liu, J., Pan, Z., He, Y., Haffari, G., and Zhuang, B. (2024a). Minicache: KV cache compression in
depth dimension for large language models. In NeurIPS.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen, W. (2021). What makes good in-context
examples for gpt-3? In ACL.

Liu, S., Ye, H., Xing, L., and Zou, J. (2024b). In-context vectors: making in context learning more effective
and controllable through latent space steering. In ICML.

Liu, X., Ji, K., Fu, Y., Du, Z., Yang, Z., and Tang, J. (2022a). P-tuning v2: Prompt tuning can be
comparable to fine-tuning universally across scales and tasks. In ACL.

Liu, X., Ji, K., Fu, Y., Tam, W., Du, Z., Yang, Z., and Tang, J. (2022b). P-tuning: Prompt tuning can be
comparable to fine-tuning across scales and tasks. In ACL.

Lu, J., Teehan, R., and Ren, M. (2024). Procreate, don’t reproduce! propulsive energy diffusion for creative
generation. In ECCV.

Min, S., Lewis, M., Zettlemoyer, L., and Hajishirzi, H. (2022a). MetaICL: Learning to learn in context. In
NAACL.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., and Zettlemoyer, L. (2022b).
Rethinking the role of demonstrations: What makes in-context learning work? In EMNLP.

Muhtar, D., Shen, Y., Yang, Y., Liu, X., Lu, Y., Liu, J., Zhan, Y., Sun, H., Deng, W., Sun, F., Zhang, X.,
Gao, J., Chen, W., and Zhang, Q. (2024). Streamadapter: Efficient test time adaptation from contextual
streams. arXiv preprint arXiv:2411.09289.

Nichol, A. Q., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B., Sutskever, I., and Chen, M.
(2022). GLIDE: towards photorealistic image generation and editing with text-guided diffusion models.
In ICML.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are
unsupervised multitask learners. OpenAI.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-resolution image synthesis
with latent diffusion models. In CVPR.

Shin, T., Razeghi, Y., IV, R. L. L., Wallace, E., and Singh, S. (2020). AutoPrompt: Eliciting knowledge
from language models with automatically generated prompts. In EMNLP.

13

Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung, H. W., Scales, N., Tanwani, A., Cole-Lewis,
H., Pfohl, S., Payne, P., Seneviratne, M., Gamble, P., Kelly, C., Scharli, N., Chowdhery, A., Mansfield,
P., y Arcas, B. A., Webster, D., Corrado, G. S., Matias, Y., Chou, K., Gottweis, J., Tomasev, N., Liu, Y.,
Rajkomar, A., Barral, J., Semturs, C., Karthikesalingam, A., and Natarajan, V. (2023). Large language
models encode clinical knowledge. In Nature.

Srivastava, A., Rastogi, A., Rao, A., Md-Shoeb, A.-A., Abid, A., Fisch, A., Brown, A., Santoro, A., Gupta,
A., and et al. (2023). Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. In TMLR.

Sun, Y., Wang, X., Zhuang, L., Miller, J., Hardt, M., and Efros, A. A. (2020). Test-time training with
self-supervision for generalization under distribution shifts. In ICML.

Suzgun, M., Scales, N., Scharli, N., Gehrmann, S., Tay, Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi,
E. H., Zhou, D., and Wei, J. (2022). Challenging big-bench tasks and whether chain-of-thought can solve
them. In ACL.

Wallace, B., Gokul, A., Ermon, S., and Naik, N. (2023). End-to-end diffusion latent optimization improves
classifier guidance. In ICCV.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi, E. H., Narang, S., Chowdhery, A., and Zhou, D. (2023).
Self-consistency improves chain of thought reasoning in language models. In ICML.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H., Le, Q. V., and Zhou, D.
(2022). Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS.

Ye, Q., Lin, B. Y., and Ren, X. (2021). CrossFit: A few-shot learning challenge for cross-task generalization
in NLP. In EMNLP.

Zhao, J. (2023). In-context exemplars as clues to retrieving from large associative memory. In ICML Neural
Conversational AI.

14

Appendix

A Time Complexity

At each training iteration, an LLM’s forward and backward passes are dominated by its self-attention oper-
ations. Consider a single attention head of dimension d. Let LQ denote the number of query tokens and LK

the number of key (and value) tokens. We form the query matrix Q ∈ RLQ×d and the key and value vectors
K,V ∈ RLK×d, then compute

Attention (Q,K,V) = softmax
(

QK⊤
√
d

)
V,

whose dominant cost is the matrix multiplication QK⊤, requiring O(LQ LK d) operations per head. Because
d is a constant for a given model, we omit it in our comparisons below.

Next, let n be the number of tokens in the task’s query and p the number of additional trainable prompt
or prefix tokens per layer, we analyze how the training time of each method in the In-Context Optimization
framework scales with n and p.

Test Time Training. At each layer of each training iteration, TTT prepends p trainable tokens to the n
query tokens and computes their keys and values, giving LQ = n+p and LK = n+p with a per-head cost of

O
(
(n+ p)2

)
.

CT-Prompt. CT-Prompt prepends p trainable soft token embeddings to the query and computes their
keys and values, also giving LQ = n+ p and LK = n+ p with a per-head cost of

O
(
(n+ p)2

)
.

CT-KV. Unlike from TTT and CT-Prompt, CT-KV prepends p trainable tokens as past keys and values,
so these tokens do not generate queries. This yields LQ = n and LK = n+ p with a per-head cost of only

O (n (n+ p)) .

Time Complexity for k Demonstrations Suppose we have k demonstration pairs, each of length ℓ
(assuming equal length). In TTT, n = ℓ is the length of a demonstration pair and p = (k − 1)ℓ is the
summed length of other demonstration pairs. For CT-Prompt and CT-KV, n and p have the same values
as TTT because Leave One Out masks out one of the in-context demonstration pairs. Table 5 summarizes
the per-head costs in k and ℓ, showing that both CT-Prompt and TTT incur quadratic cost in k, while
CT-KV grows only linearly in k. This k-fold reduction in self-attention complexity explains CT-KV’s faster
empirical training speed in Table 1.

Method LQ LK Per-Head Cost

TTT kℓ kℓ O
(
(kℓ)2

)
CT-Prompt kℓ kℓ O

(
(kℓ)2

)
CT-KV ℓ kℓ O

(
k ℓ2

)
Table 5: Per-head self-attention time complexity for methods with k demonstration pairs of length ℓ.

B Prompt Tuning and Prefix Tuning with Other Initialization
Schemes

In Table 1, we reported Prompt Tuning and Prefix Tuning results using only random-token initialization for
their trainable prompts and prefixes. Here, we also follow Lester et al. (2021) in initializing prompts from

15

Method NLP-LR MMLU BBH ARC

Prompt Tuning (m = 32, uniform) 39.4 34.3 34.4 5.0
Prompt Tuning (m = 32, token) 41.4 39.2 50.8 12.0
Prefix Tuning (m = 32, uniform) 38.2 26.8 10.22 3.3
Prefix Tuning (m = 32, MLP) 39.6 26.2 11.03 7.3
Prefix Tuning (m = 32, token) 42.0 39.9 52.7 9.3

Table 6: Ablation of initialization schemes for Prompt Tuning and Prefix Tuning. We show the means of
accuracies over 5 seeds with different sets of demonstration pairs per task (except for ARC because it has
fixed demonstration pairs).

a uniform distribution, and Li and Liang (2021) in initializing prefixes either from a uniform distribution
or from a seed prefix passed through a two-layer MLP (hidden size 512). Table 6 shows that both Prompt
Tuning and Prefix Tuning perform best with random-token initialization, confirming the findings of those
works. Therefore, even when compared against these alternative initialization schemes, CT-Prompt and
CT-KV continue to deliver superior performance.

C More Details on Experiment Setup

We detail below our hyperparameter settings for the results reported in Table 1 and Table 6. For TTT, we
follow Akyürek et al. (2024): using a LoRA learning rate of 1e-4, sampling a random permutation of the k
demonstration pairs at each training step, and setting the LoRA rank to 128 for ARC and 64 for all other
tasks. In our TTT+CT-KV experiments, we find that using a small number of CT-KV training iterations
and lower learning rates further boosts performance on top of a TTT-adapted model.

For all other experiments, we search over learning rates 3e-4, 1e-3, 3e-3 and Token Dropout rates
0, 0.05, 0.1. We search training iterations 150, 200, 250, 300 for NLP-LR and ARC experiments, 15, 20, 25, 30
for MMLU experiments, and 12, 16, 20, 24 for BBH experiments. Table 7 shows our hyperparameter choices.
For fair comparison, hyperparameter sweeps are performed for all methods. For CT-Prompt, CT-KV, and
TTT+CT-KV, we use Token Dropout rates of 0.05 for NLP-LR and 0.1 for MMLU, BBH, and ARC.

Experiments for NLP-LR are performed on a single RTX8000, while all other experiments are conducted
on a single A100. All experiments use the Adam optimizer, a cosine learning rate scheduler with no warm-up,
bfloat16 precision, and up to 32GB of CPU RAM.

To fairly compare efficiency, we train each method with the largest batch size possible for the GPU used
in its experiment. Since TTT, Prompt Tuning (m=# demo), and CT-Prompt use more memory than other
methods due to computing larger QKT matrices (as shown in our derivation in Section A), we limit their
batch sizes to 4 for NLP-LR, MMLU, and ARC, and 5 for BBH. MMLU and BBH models use gradient
checkpointing. For all other methods, we use batch size 16 for NLP-LR, 8 for MMLU with gradient accu-
mulation of 2, 2 for BBH with gradient accumulation of 5, and full batch for ARC (depending on each task’s
number of demonstration pairs). All models, unless noted, do not require gradient checkpointing.

D Parameter-Efficient Variants of CT-KV

In this section, we explore two variants of CT-KV that reduce the number of trainable prefix parameters.
We use the notations from Section 4.

CT-V We partition the trainable prefix ΘCT into its key and value components, ΘK and ΘV . Inspired
by Kirkpatrick et al. (2017), we estimate the importance of each trainable parameter Θj ∈ ΘCT by computing
its diagonal Fisher term over the k demonstrations in D:

F̂j =
1

k

k∑
i=1

(
∇Θj

log pϕ(yi
∣∣ ΘCT, xi)

)2
.

16

NLP-LR MMLU BBH ARC

Method LR # iters LR # iters LR # iters LR # iters

Prompt Tuning (m=32, uniform) 3e-3 200 3e-3 25 1e-3 20 3e-3 250
Prompt Tuning (m=32, token) 3e-3 200 1e-3 25 3e-3 16 3e-3 200
Prompt Tuning (m=#demo, token) 1e-3 250 1e-3 20 3e-4 16 3e-3 200
Prefix Tuning (m=32, uniform) 3e-3 250 3e-3 25 1e-3 20 3e-3 250
Prefix Tuning (m=32, MLP) 3e-3 250 1e-3 25 3e-3 20 1e-3 200
Prefix Tuning (m=32, token) 3e-3 250 3e-3 25 3e-3 16 3e-3 200
Prefix Tuning (m=#demo, token) 1e-3 250 3e-3 25 3e-3 16 3e-3 200
CT-Prompt 1e-3 250 1e-3 25 3e-4 12 1e-3 250
CT-KV 1e-3 200 3e-3 20 1e-3 16 3e-3 200
TTT 1e-4 250 1e-4 20 1e-4 8 1e-4 200
TTT+CT-KV 1e-3 25 1e-4 5 1e-3 8 1e-3 25

Table 7: Learning rates (LR) and number of training iterations (# iters) used for each method and
benchmark.

F̂j provides a relative estimate of how much a change in each parameter Θj affects the model’s ability to solve

each demonstration pair, representing its importance during training. By averaging F̂j across parameters in

ΘK and ΘV , we obtain two scalar estimates, F̂K and F̂V , indicating the relative importance of the trainable
keys and values, respectively. Based on our findings in Table 8, we conclude that F̂V ≫ F̂K for most tasks,
suggesting that values play a more significant role. By freezing ΘK ⊂ ΘCT and training only ΘV ⊂ ΘCT,
we arrive at CT-V, which reduces the number of trainable parameters in CT-KV by exactly half.

Dataset F̂K F̂V

ARC 2.43× 10−9 1.02× 10−7

BBH 1.89× 10−6 3.99× 10−4

NLP-LR 1.44× 10−8 8.32× 10−8

MMLU 2.81× 10−8 1.42× 10−6

Table 8: Average Fisher information for the trainable key parameters ΘK ⊂ ΘCT and value parameters
ΘV ⊂ ΘCT across 5 random selections of k demonstration pairs over each dataset.

CT-Prefix We freeze ΘCT, average the parameters across tokens to obtain an average prefix Θ̄CT, and
then form a new trainable m-token prefix Θprefix by adding small Gaussian perturbations:

Θprefix = {Θ̄CT + ϵi}mi=1,

where ϵi ∈ N (0, 0.02). The model additionally conditions on Θprefix, analogous to Prefix Tuning. Since we
only train Θprefix, this variant has the same number of trainable parameters as Prefix Tuning with m tokens.

We evaluate CT-V and CT-Prefix across all benchmarks and compare them to CT-KV in Table 9, showing
that both parameter-efficient variants retain most of the performance gain of CT-KV and outperform Prefix
Tuning. For CT-V, we use the same hyperparameters as CT-KV from Section C. For CT-Prefix, we find
that higher learning rates, 1e-1 for NLP-LR and 5e-2 for other datasets, are needed for better performance.

E Number of Trainable Parameters

Corresponding to the performance shown in Table 1, we report the average number of trainable parameters
for each method across tasks in Table 10. Note that although CT-KV’s number of trainable parameters
scales with the number of demonstration tokens, it still trains significantly fewer parameters on average per
task than the number of LoRA parameters used by TTT. Following Akyürek et al. (2024), we use task
instructions for BBH and set the instruction prompt or prefix to be trainable as well. We omit Zero-Shot
and ICL from this comparison because they do not involve any trainable parameters.

17

Method NLP-LR MMLU BBH ARC

Prefix Tuning (m=32) 42.0 39.9 52.7 9.3
CT-Prefix 44.0 42.6 55.9 22.8
CT-V 44.0 43.5 57.5 23.5
CT-KV 44.2 43.7 57.9 23.8

Table 9: Accuracies (%) of CT-KV, its parameter-efficient variants, and Prefix Tuning across benchmarks,
averaged over 5 seeds (except for ARC because it has fixed demonstration pairs).

Method NLP-LR MMLU BBH ARC

Prompt Tuning (m=32) 41 98 229 66
Prompt Tuning (m=#demo) 578 2160 3656 2743
Prefix Tuning (m=32) 2949 1835 3668 524
Prefix Tuning (m=#demo) 41634 40327 58501 21944
TTT 47186 89915 157286 84935
CT-Prompt 578 2160 3656 2743
CT-Prefix 2949 1835 3668 524
Context Tuning 20817 20163 29250 10972
CT-KV 41634 40327 58501 21944
TTT+CT-KV 88820 130242 215787 106878

Table 10: Number of trainable parameters (in thousands) for each method across benchmarks, correspond-
ing to entries in Table 1.

F Qualitative Samples vs. Training Iteration

In this section, we select sample tasks from question-answering datasets to illustrate how autoregressively
generated answers gradually improve with CT-KV training. We present two ARC tasks in Figure 5. In the
top task, the model’s prediction at iteration 0 (equivalent to ICL) shows a strong bias toward filling orange
squares with yellow. As CT-KV training progresses, the model gradually learns to fill each orange square
with the correct color. Similarly, in the bottom task, the model first learns that only grey grid cells can turn
red, and then correctly completes the cross shapes.

Similarly, for BBH, in Figure 6’s top query, the model initially predicts “padre, panicking” and “school-
mate, suburbia” in reversed order at iteration 0. During CT-KV training, the model learns to use the
second letter of each word for sorting and eventually answers the query correctly. Likewise, for the bottom
query, CT-KV helps the model avoid omitting the word “scrumptious” from its outputs and sort the words
“sidereal, siena” into the correct order based on their second letters.

G Demonstration Pairs for Figure 3

We present three demonstration pairs of datasets: BBH, NLP-LR, and MMLU in Figure 7, Figure 8, and
Figure 9, respectively.

18

Query 1

Answer 1

Query 2

Answer 2

Query 3

Answer 3

Query 4

Answer 4

Test Query

Test Query

Iteration 0 Iteration 50 Iteration 100 Iteration 150 Iteration 200

Query 1 Query 2 Query 3 Query 4

Answer 1 Answer 2 Answer 3 Answer 4

Iteration 0 Iteration 50 Iteration 100 Iteration 150 Iteration 200

Figure 5: For each of the two ARC tasks at the top and bottom, we display 4 demonstration query-answer
pairs, the test query, and LLM predictions at CT-KV training iterations 0, 50, 100, 150, 200. Note that
iteration 0 is equivalent to ICL. We color-code the iterations of correct predictions in green and incorrect
predictions in red.

19

Instruction: Sort a list of words. Answer with only a sequence of words.

Query: Sort the following words alphabetically: List: wv habitation panicking schoolmate aerodynamic

 giacomo nebulous offset vector roosevelt jimmy botanist suburbia padre

Iteration 0: aerodynamic botanist giacomo habitation jimmy nebulous offset panicking padre roosevelt suburbia schoolmate vector wv

Iteration 12: aerodynamic botanist giacomo habitation jimmy nebulous offset panicking padre roosevelt suburbia schoolmate vector wv

Iteration 16: aerodynamic botanist giacomo habitation jimmy nebulous offset panicking padre roosevelt schoolmate suburbia vector wv

Iteration 20: aerodynamic botanist giacomo habitation jimmy nebulous offset padre panicking roosevelt schoolmate suburbia vector wv

Instruction: Sort a list of words. Answer with only a sequence of words.

Query: Sort the following words alphabetically: List: scrumptious sidereal thermal yakima siena gorky saxon scottish figural hydroxyl

 seventeen neapolitan rampage nerve grapple fate plainfield stooge knives allotted

Iteration 0: allotted fate figural gorky grapple hydroxyl knives neapolitan nerve plainfield rampage saxon scottish seventeen siena sidereal

 stooge thermal yakima

Iteration 12: allotted fate figural gorky grapple hydroxyl knives neapolitan nerve plainfield rampage saxon scottish seventeen siena sidereal

 stooge thermal yakima

Iteration 16: allotted fate figural gorky grapple hydroxyl knives neapolitan nerve plainfield rampage saxon scottish scrumptious seventeen

 siena sidereal stooge thermal yakima

Iteration 20: allotted fate figural gorky grapple hydroxyl knives neapolitan nerve plainfield rampage saxon scottish scrumptious seventeen

 sidereal siena stooge thermal yakima

Figure 6: We display LLM predictions at CT-KV training iterations 0, 12, 16, 20 for two queries from
the task “word sorting” in BBH. We omit showing the 16 demonstration pairs of each task for brevity. We
color-code the iterations of correct predictions in green and incorrect predictions in red.

20

A logical deduction task which requires deducing the order of a sequence of objects.
Answer with only the corresponding letter (e.g. (A)).
The following paragraphs each describe a set of three objects arranged in a fixed order.
The statements are logically consistent within each paragraph. In an antique car show,
there are three vehicles: a motorcycle, a limousine, and a convertible. The motorcycle is
newer than the limousine. The convertible is newer than the motorcycle.
Options:
(A) The motorcycle is the oldest
(B) The limousine is the oldest
(C) The convertible is the oldest
(B)

A logical deduction task which requires deducing the order of a sequence of objects.
Answer with only the corresponding letter (e.g. (A)).
The following paragraphs each describe a set of three objects arranged in a fixed order.
The statements are logically consistent within each paragraph. On a shelf, there are three
books: a blue book, an orange book, and a red book. The blue book is the rightmost. The
orange book is the leftmost.
Options:
(A) The blue book is the second from the left
(B) The orange book is the second from the left
(C) The red book is the second from the left
(C)

A logical deduction task which requires deducing the order of a sequence of objects.
Answer with only the corresponding letter (e.g. (A)).
The following paragraphs each describe a set of three objects arranged in a fixed order.
The statements are logically consistent within each paragraph. In an antique car show,
there are three vehicles: a motorcycle, a minivan, and a tractor. The minivan is older than
the tractor. The minivan is the second-newest.
Options:
(A) The motorcycle is the newest
(B) The minivan is the newest
(C) The tractor is the newest
(C)

Instruction:

Query:

Answer:

Instruction:

Query:

Answer:

Instruction:

Query:

Answer:

(1)

(2)

(3)

Figure 7: 3 demonstration pairs for the BBH task from Figure 3.

21

Cellular respiration releases
blood, waste, snot, feces
waste

Query:
Options:
Answer:

(1)

During what period of the Earth cycle would you
see someone having a picnic outside?
Day, Night, Extinction, Ice Age
Day

Which uses gills to breathe?
hermit crab, human, blue whale, bluebird
hermit crab

(2)

(3) Query:
Options:
Answer:

Query:

Options:
Answer:

Figure 8: 3 demonstration pairs for the NLP-LR task from Figure 3.

Query:
Options:
Answer:

(1)

(2)

(3) Query:
Options:
Answer:

Query:

Options:
Answer:

Find the degree for the given field extension Q(sqrt(2),
sqrt(3), sqrt(18)) over Q.
0, 4, 2, 6
4

Find the order of the factor group (Z_11 x Z_15)/(<1, 1>)
1, 2, 5, 11
1

The inverse of -i in the multiplicative group, {1, -1, i , -i} is
1, -1, i, -i
i

Figure 9: 3 demonstration pairs for the MMLU task from Figure 3.

22

	Introduction
	Related Work
	Background
	Context Tuning for In-Context Optimization
	In-Context Optimization
	Test-Time Training as ICO
	Context Tuning

	Experiments
	Datasets
	Models
	Experiment Setup
	Comparing Context Tuning to Baselines
	Ablation Study
	Qualitative Analysis
	Why does CT-KV Outperform ICL?

	Conclusion
	Time Complexity
	Prompt Tuning and Prefix Tuning with Other Initialization Schemes
	More Details on Experiment Setup
	Parameter-Efficient Variants of CT-KV
	Number of Trainable Parameters
	Qualitative Samples vs. Training Iteration
	Demonstration Pairs for Figure ??

